底的根除 发表于 2025-3-21 18:35:02

书目名称Global Analysis in Mathematical Physics影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0386008<br><br>        <br><br>书目名称Global Analysis in Mathematical Physics影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0386008<br><br>        <br><br>书目名称Global Analysis in Mathematical Physics网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0386008<br><br>        <br><br>书目名称Global Analysis in Mathematical Physics网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0386008<br><br>        <br><br>书目名称Global Analysis in Mathematical Physics被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0386008<br><br>        <br><br>书目名称Global Analysis in Mathematical Physics被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0386008<br><br>        <br><br>书目名称Global Analysis in Mathematical Physics年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0386008<br><br>        <br><br>书目名称Global Analysis in Mathematical Physics年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0386008<br><br>        <br><br>书目名称Global Analysis in Mathematical Physics读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0386008<br><br>        <br><br>书目名称Global Analysis in Mathematical Physics读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0386008<br><br>        <br><br>

拖网 发表于 2025-3-21 22:05:59

http://reply.papertrans.cn/39/3861/386008/386008_2.png

Longitude 发表于 2025-3-22 01:48:02

http://reply.papertrans.cn/39/3861/386008/386008_3.png

同谋 发表于 2025-3-22 05:59:27

http://reply.papertrans.cn/39/3861/386008/386008_4.png

Protein 发表于 2025-3-22 12:31:06

Executive Search and the European Scene,, and .) However, we should particularly point out the excellent introductory paper illuminating those aspects of the theory which are especially important for our approach. Some basic notions are briefly reviewed in Appendix C.

能量守恒 发表于 2025-3-22 15:15:10

http://reply.papertrans.cn/39/3861/386008/386008_6.png

能量守恒 发表于 2025-3-22 17:33:49

http://reply.papertrans.cn/39/3861/386008/386008_7.png

Constrain 发表于 2025-3-22 23:50:40

Stochastic Differential Equations on Riemannian Manifolds, and .) However, we should particularly point out the excellent introductory paper illuminating those aspects of the theory which are especially important for our approach. Some basic notions are briefly reviewed in Appendix C.

信任 发表于 2025-3-23 04:28:24

The Langevin Equationng in geometric mechanics. Note that in the case under consideration the trajectories of the process are a.s. smooth. This makes the analysis of such systems technically much simpler than that of the general ones studied in Chap. 4.

柔美流畅 发表于 2025-3-23 08:22:13

Mean Derivatives, Nelson’s Stochastic Mechanics, and Quantizationtly, Fenyes was the first to introduce and study such processes. However, stochastic mechanics became well known only after the publication of papers and by Nelson who developed the theory independently and gave it a natural form. A more detailed review of the history of this question can be found in , , and .
页: [1] 2 3 4 5
查看完整版本: Titlebook: Global Analysis in Mathematical Physics; Geometric and Stocha Yuri Gliklikh Book 1997 Springer Science+Business Media New York 1997 Christo