习惯 发表于 2025-3-21 20:09:17

书目名称Getting Acquainted with Homogenization and Multiscale影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0385434<br><br>        <br><br>书目名称Getting Acquainted with Homogenization and Multiscale影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0385434<br><br>        <br><br>书目名称Getting Acquainted with Homogenization and Multiscale网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0385434<br><br>        <br><br>书目名称Getting Acquainted with Homogenization and Multiscale网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0385434<br><br>        <br><br>书目名称Getting Acquainted with Homogenization and Multiscale被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0385434<br><br>        <br><br>书目名称Getting Acquainted with Homogenization and Multiscale被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0385434<br><br>        <br><br>书目名称Getting Acquainted with Homogenization and Multiscale年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0385434<br><br>        <br><br>书目名称Getting Acquainted with Homogenization and Multiscale年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0385434<br><br>        <br><br>书目名称Getting Acquainted with Homogenization and Multiscale读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0385434<br><br>        <br><br>书目名称Getting Acquainted with Homogenization and Multiscale读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0385434<br><br>        <br><br>

背信 发表于 2025-3-22 00:19:07

http://reply.papertrans.cn/39/3855/385434/385434_2.png

野蛮 发表于 2025-3-22 01:29:34

Leonid Berlyand,Volodymyr RybalkoDevelopment of an intuitive understanding that complements rigorous mathematics.Makes advanced mathematical tools and concepts accessible to non-experts.Presentations in all Chapters is supplied with

使隔离 发表于 2025-3-22 04:47:43

http://reply.papertrans.cn/39/3855/385434/385434_4.png

平常 发表于 2025-3-22 10:29:11

Grundkurs Wirtschaftsinformatiker” which elucidates a key difference with the .-limit in continuum problems from .. We explain in detail the effect of convexification in the .-limit which applies to both discrete and continuum settings and emphasizes the crucial differences between homogenization for convex and nonconvex Lagrangians.

保全 发表于 2025-3-22 14:22:04

http://reply.papertrans.cn/39/3855/385434/385434_6.png

保全 发表于 2025-3-22 18:49:09

http://reply.papertrans.cn/39/3855/385434/385434_7.png

Paradox 发表于 2025-3-23 01:07:25

Formal Two-Scale Asymptotic Expansions and the Corrector Problem,f separation of slow and fast variables, proved to be extremely efficient not only in homogenization problems but also in the variety of other applications. In the context of the case study conductivity problem we also introduce the so-called corrector problem which is the heart of the homogenization method.

Transfusion 发表于 2025-3-23 03:27:32

Two-Scale Convergence, framework for many practical problems where the direct justification of asymptotic expansions becomes prohibitively cumbersome. In particular, we describe an interesting example of homogenization of well-known double-porosity problem that models fluid flow in porous media.

迎合 发表于 2025-3-23 06:41:02

http://reply.papertrans.cn/39/3855/385434/385434_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Getting Acquainted with Homogenization and Multiscale; Leonid Berlyand,Volodymyr Rybalko Textbook 2018 Springer Nature Switzerland AG 2018