Encounter 发表于 2025-3-21 16:51:52
书目名称Geometry of Submanifolds and Applications影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0383829<br><br> <br><br>书目名称Geometry of Submanifolds and Applications影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0383829<br><br> <br><br>书目名称Geometry of Submanifolds and Applications网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0383829<br><br> <br><br>书目名称Geometry of Submanifolds and Applications网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0383829<br><br> <br><br>书目名称Geometry of Submanifolds and Applications被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0383829<br><br> <br><br>书目名称Geometry of Submanifolds and Applications被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0383829<br><br> <br><br>书目名称Geometry of Submanifolds and Applications年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0383829<br><br> <br><br>书目名称Geometry of Submanifolds and Applications年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0383829<br><br> <br><br>书目名称Geometry of Submanifolds and Applications读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0383829<br><br> <br><br>书目名称Geometry of Submanifolds and Applications读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0383829<br><br> <br><br>裁决 发表于 2025-3-21 23:50:07
http://reply.papertrans.cn/39/3839/383829/383829_2.pngovation 发表于 2025-3-22 03:11:29
2363-6149 d graduate students looking to stay updated with the latest developments in the field. With its comprehensive coverage and detailed explanations, this book is an essential resource for anyone interested in submanifold theory..978-981-99-9752-7978-981-99-9750-3Series ISSN 2363-6149 Series E-ISSN 2363-6157修正案 发表于 2025-3-22 05:36:09
,Solitons in ,-Gravity,ively. Specifically, we establish criteria in which .-Ricci solitons are shrinking, expanding, or steady and for gradient .-Ricci solitons, either the spacetime represents the equation of state . constant, or the perfect fluid has vanishing vorticity.证实 发表于 2025-3-22 10:31:15
978-981-99-9752-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singaporcarbohydrate 发表于 2025-3-22 16:11:04
Geometry of Submanifolds and Applications978-981-99-9750-3Series ISSN 2363-6149 Series E-ISSN 2363-6157carbohydrate 发表于 2025-3-22 20:06:03
http://reply.papertrans.cn/39/3839/383829/383829_7.png小卷发 发表于 2025-3-22 21:26:20
Georg Reddewig,Hans-Achim Dubberkeent Yamabe solitons, .-Ricci and gradient .-Ricci solitons are its metrics. We establish criteria for which Ricci solitons are steady, expanding, or shrinking. Moreover, we study gradient Ricci solitons and prove that either the perfect fluid spacetime represents the dark energy era, or the spacetimAstigmatism 发表于 2025-3-23 02:44:02
https://doi.org/10.1007/978-3-322-96170-9rvey of results on Lagrangian submanifolds . of the nearly Kähler . in terms of a canonically induced almost contact metric structure, Chen’s equality, normal connection, normal curvature operator, Ricci tensor and conformal flatness. In particular, conditions for . to be Sasakian and totally geodes纤细 发表于 2025-3-23 06:32:58
,Einkaufsverhandlungen (aus-)führen,odels of real space forms. They are defined by an equation based on the shape operator. We give several examples and observe that any Pythagorean submanifold is isoparametric where the principal curvatures are given in terms of the Golden ratio. We also classify Pythagorean hypersurfaces.