铲除 发表于 2025-3-21 16:36:12

书目名称Geometry of Manifolds with Non-negative Sectional Curvature影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0383817<br><br>        <br><br>书目名称Geometry of Manifolds with Non-negative Sectional Curvature影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0383817<br><br>        <br><br>书目名称Geometry of Manifolds with Non-negative Sectional Curvature网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0383817<br><br>        <br><br>书目名称Geometry of Manifolds with Non-negative Sectional Curvature网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0383817<br><br>        <br><br>书目名称Geometry of Manifolds with Non-negative Sectional Curvature被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0383817<br><br>        <br><br>书目名称Geometry of Manifolds with Non-negative Sectional Curvature被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0383817<br><br>        <br><br>书目名称Geometry of Manifolds with Non-negative Sectional Curvature年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0383817<br><br>        <br><br>书目名称Geometry of Manifolds with Non-negative Sectional Curvature年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0383817<br><br>        <br><br>书目名称Geometry of Manifolds with Non-negative Sectional Curvature读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0383817<br><br>        <br><br>书目名称Geometry of Manifolds with Non-negative Sectional Curvature读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0383817<br><br>        <br><br>

panorama 发表于 2025-3-22 00:10:39

http://reply.papertrans.cn/39/3839/383817/383817_2.png

兵团 发表于 2025-3-22 00:40:46

http://reply.papertrans.cn/39/3839/383817/383817_3.png

开花期女 发表于 2025-3-22 07:26:56

On the Hopf Conjecture with Symmetry,r the assumption that a torus of sufficiently large dimension acts by isometries. This improves previous results by replacing linear bounds by a logarithmic bound. The new method that is introduced is the use of Steenrod squares combined with geometric arguments of a similar type to what was done be

cornucopia 发表于 2025-3-22 10:32:38

An Introduction to Exterior Differential Systems, this introduction we construct the contact systems on several kinds of jet bundles in order to reduce general partial differential equations to exterior differential systems. Moreover we discuss the algebraic properties of the Spencer cohomology associated to an exterior differential system and ske

concise 发表于 2025-3-22 15:17:35

http://reply.papertrans.cn/39/3839/383817/383817_6.png

concise 发表于 2025-3-22 17:33:54

http://reply.papertrans.cn/39/3839/383817/383817_7.png

STALE 发表于 2025-3-23 00:38:50

http://reply.papertrans.cn/39/3839/383817/383817_8.png

压倒性胜利 发表于 2025-3-23 05:13:58

Riemannian Manifolds with Positive Sectional Curvature,Of special interest in the history of Riemannian geometry have been manifolds with positive sectional curvature. In these notes we give a survey of this subject and recent developments.

滔滔不绝的人 发表于 2025-3-23 08:00:03

http://reply.papertrans.cn/39/3839/383817/383817_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Geometry of Manifolds with Non-negative Sectional Curvature; Editors: Rafael Herr Owen Dearricott,Fernando Galaz-García,Wolfgang Zil Book 2