赞美 发表于 2025-3-21 17:17:59

书目名称Geometry of Harmonic Maps影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0383808<br><br>        <br><br>书目名称Geometry of Harmonic Maps影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0383808<br><br>        <br><br>书目名称Geometry of Harmonic Maps网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0383808<br><br>        <br><br>书目名称Geometry of Harmonic Maps网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0383808<br><br>        <br><br>书目名称Geometry of Harmonic Maps被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0383808<br><br>        <br><br>书目名称Geometry of Harmonic Maps被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0383808<br><br>        <br><br>书目名称Geometry of Harmonic Maps年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0383808<br><br>        <br><br>书目名称Geometry of Harmonic Maps年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0383808<br><br>        <br><br>书目名称Geometry of Harmonic Maps读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0383808<br><br>        <br><br>书目名称Geometry of Harmonic Maps读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0383808<br><br>        <br><br>

反应 发表于 2025-3-21 23:12:20

Equivariant Harmonic Maps,has been successfully utilized in , , , , , and . Recently, in their monograph Eells-Ratto emphasize the ODE method to the elliptic variational problems. The present chapter is also devoted to the equivariant harmonic maps. Besides single ODE, the redu

柔美流畅 发表于 2025-3-22 03:22:56

Progress in Nonlinear Differential Equations and Their Applications383808.jpg

adhesive 发表于 2025-3-22 06:42:13

1421-1750 nergy density and the second varia­ tional formula. This chapter serves not only as a basis for the later chapters, but also as a brief introduction to the theo978-1-4612-8644-8978-1-4612-4084-6Series ISSN 1421-1750 Series E-ISSN 2374-0280

不来 发表于 2025-3-22 09:55:13

Book 1996and interesting examples are presented. Various important properties and formulas are derived. Among them are Bochner-type formula for the energy density and the second varia­ tional formula. This chapter serves not only as a basis for the later chapters, but also as a brief introduction to the theo

出处 发表于 2025-3-22 14:43:18

http://reply.papertrans.cn/39/3839/383808/383808_6.png

出处 发表于 2025-3-22 17:10:07

http://reply.papertrans.cn/39/3839/383808/383808_7.png

Proponent 发表于 2025-3-22 22:07:55

Harmonic maps and gauss maps,n define a generalized Gauss map. In many cases properties of submanifolds are characterized by their Gauss maps and closely link with the theory of harmonic maps. We now present some results in this direction.

共同给与 发表于 2025-3-23 04:41:53

Existence, Nonexistence and Regularity,can be proved by several methods, such as the perturbation method due to K. Uhlenbeck . In this chapter we discuss existence for harmonic maps by the direct method of the calculus of variations. The key point of the method is regularity. Partial regularity of the minimizing maps has been obtained

令人苦恼 发表于 2025-3-23 05:52:25

Equivariant Harmonic Maps,ld solve PDE’s on certain manifolds. In the case when the sectional curvature of the target manifold is nonpositive or the image of the map is contained in a geodesic convex neighborhood, such a problem has been solved in , and by PDE method. But, for maps into positively curved
页: [1] 2 3 4
查看完整版本: Titlebook: Geometry of Harmonic Maps; Yuanlong Xin Book 1996 Birkhäuser Boston 1996 Boundary value problem.Geometry.Maps.Minkowski space.cls.manifold