LEERY 发表于 2025-3-25 05:45:11

0169-6378 Overview: 978-94-010-5605-2978-94-011-3618-1Series ISSN 0169-6378

Musculoskeletal 发表于 2025-3-25 08:52:04

http://reply.papertrans.cn/39/3839/383805/383805_22.png

immunity 发表于 2025-3-25 15:18:02

https://doi.org/10.1007/978-3-663-05970-7r on all pairs of elements (that all proper subgroups are cyclic or that certain identities in two variables hold, as in Chapter 9). In this the final chapter, we consider another type of universal restriction on the elements of a group, namely, the conjugacy of any pair of elements satisfying certain natural conditions.

delegate 发表于 2025-3-25 16:52:16

Partitions of Relators,ns of groups of a certain specific type. The partitions of the boundaries of cells are induced by natural decompositions of relators. In this chapter we study basic properties of presentations of this kind and, in Chapter 9, we find explicit forms of relators depending on the group-theoretic problem under consideration.

condone 发表于 2025-3-25 23:18:46

Conjugacy Relations,r on all pairs of elements (that all proper subgroups are cyclic or that certain identities in two variables hold, as in Chapter 9). In this the final chapter, we consider another type of universal restriction on the elements of a group, namely, the conjugacy of any pair of elements satisfying certain natural conditions.

2否定 发表于 2025-3-26 00:34:38

http://reply.papertrans.cn/39/3839/383805/383805_26.png

Addictive 发表于 2025-3-26 08:01:23

http://reply.papertrans.cn/39/3839/383805/383805_27.png

赏心悦目 发表于 2025-3-26 09:23:47

,Einführung in das digitale Zeitalter,In §7 we considerednatural finiteness conditions which arose in the process of imposing on infinite abstract groups characteristic properties of finite groups.

Rct393 发表于 2025-3-26 15:47:24

http://reply.papertrans.cn/39/3839/383805/383805_29.png

使混合 发表于 2025-3-26 20:30:22

http://reply.papertrans.cn/39/3839/383805/383805_30.png
页: 1 2 [3] 4 5 6
查看完整版本: Titlebook: Geometry of Defining Relations in Groups; A. Yu. Ol’shanskii Book 1991 Springer Science+Business Media Dordrecht 1991 Abelian group.Group