Hiatus 发表于 2025-3-25 06:24:22

Beschreibung der Bewegung von Massenpunkten,Assuming that the values {. = . (x.), . = 1, … , . + 1} are given up to a certain error, it is better to use smoothing polynomials, or spline functions. In this way the graph of the derived function . = . (.) lies near the given points (., .).

needle 发表于 2025-3-25 08:07:38

http://reply.papertrans.cn/39/3839/383802/383802_22.png

最初 发表于 2025-3-25 15:41:27

http://reply.papertrans.cn/39/3839/383802/383802_23.png

SEVER 发表于 2025-3-25 16:34:52

Algebraische Funktionen und Differentiale,In Section 9.1 we plot the (moving) tangent line and Frenet frame field for various types of equations of a curve; the equations of a tractrix are also derived. We then consider applications of tangent and normal lines to a curve.

Cognizance 发表于 2025-3-25 22:19:41

http://reply.papertrans.cn/39/3839/383802/383802_25.png

自由职业者 发表于 2025-3-26 00:46:35

http://reply.papertrans.cn/39/3839/383802/383802_26.png

monogamy 发表于 2025-3-26 07:18:18

Grundbegriffe der Elektroakustik,The main problem of this chapter is as follows: given a sequence of . . = {., ., … , .} arbitrarily placed in the plane or in space, construct a smooth curve passing near — through these points — and satisfying some additional conditions.

congenial 发表于 2025-3-26 10:58:32

Grundbegriffe der Elektroakustik,Non-Euclidean geometry has great historical, developing and methodological importance. The Cayley-Klein (disk) and Poincaré (half-plane) models of hyperbolic geometry are studied in the foundations of geometry and have various applications.

大厅 发表于 2025-3-26 16:14:30

Die Stromverhältnisse bei einer RückzündungA convex polygon is a particular case of a plane convex curve. In Sections 4.2, 14.3, 14.4.1 the notion of the . (CH) of a finite planar set . {., .2, … , .} of points was used.

sleep-spindles 发表于 2025-3-26 17:42:53

http://reply.papertrans.cn/39/3839/383802/383802_30.png
页: 1 2 [3] 4 5 6
查看完整版本: Titlebook: Geometry of Curves and Surfaces with MAPLE; Vladimir Rovenski Textbook 2000 Birkh�user Boston 2000 Computational Geometry.Geometry.Modelin