quiet-sleep 发表于 2025-3-23 10:06:54
,Die Statik des starren Körpers,this important subject (the study of best approximations, badly approximable numbers, etc.). In this chapter we consider two geometric questions of approximations by continued fractions. First, we prove two classical results on best approximations of real numbers by rational numbers. Second, we desc粗糙滥制 发表于 2025-3-23 14:15:30
http://reply.papertrans.cn/39/3839/383801/383801_12.png贞洁 发表于 2025-3-23 19:26:01
,Einführung in die Kinematik und Kinetik,is not a natural question within the theory of continued fractions. One can hardly imagine any law to write the continued fraction for the sum directly. The main obstacle here is that the summation of rational numbers does not have a geometric explanation in terms of the integer lattice. In this chaCANT 发表于 2025-3-24 01:04:14
http://reply.papertrans.cn/39/3839/383801/383801_14.pngoxidant 发表于 2025-3-24 05:55:13
,Gleichgewicht gestützter Körper, integer invariants. Further, we use them to study the properties of multidimensional continued fractions. First, we introduce integer volumes of polytopes, integer distances, and integer angles. Then we express volumes of polytopes, integer distances, and integer angles in terms of integer volumesPhenothiazines 发表于 2025-3-24 07:20:50
http://reply.papertrans.cn/39/3839/383801/383801_16.png切割 发表于 2025-3-24 10:51:01
http://reply.papertrans.cn/39/3839/383801/383801_17.png积习已深 发表于 2025-3-24 16:24:59
http://reply.papertrans.cn/39/3839/383801/383801_18.pngFretful 发表于 2025-3-24 20:37:00
Oleg KarpenkovNew approach to the geometry of numbers, very visual and algorithmic.Numerous illustrations and examples.Problems for each chapter.Includes supplementary material:MANIA 发表于 2025-3-24 23:34:24
Springer-Verlag Berlin Heidelberg 2013