malcontented 发表于 2025-3-21 17:30:28

书目名称Geometry of CR-Submanifolds影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0383798<br><br>        <br><br>书目名称Geometry of CR-Submanifolds影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0383798<br><br>        <br><br>书目名称Geometry of CR-Submanifolds网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0383798<br><br>        <br><br>书目名称Geometry of CR-Submanifolds网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0383798<br><br>        <br><br>书目名称Geometry of CR-Submanifolds被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0383798<br><br>        <br><br>书目名称Geometry of CR-Submanifolds被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0383798<br><br>        <br><br>书目名称Geometry of CR-Submanifolds年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0383798<br><br>        <br><br>书目名称Geometry of CR-Submanifolds年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0383798<br><br>        <br><br>书目名称Geometry of CR-Submanifolds读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0383798<br><br>        <br><br>书目名称Geometry of CR-Submanifolds读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0383798<br><br>        <br><br>

CESS 发表于 2025-3-21 21:50:10

https://doi.org/10.1007/978-3-642-71770-3act manifolds (see Blair ,p. 62) are examples of ~R-manifolds. Non-trivial CRmanifolds appeared as boundaries of domains in complex spaces, which in fact are real hypersurfaces (i.e.,particular CR-submanifolds).

aphasia 发表于 2025-3-22 03:14:44

CR-Structures and Pseudo-Conformal, Mappings,act manifolds (see Blair ,p. 62) are examples of ~R-manifolds. Non-trivial CRmanifolds appeared as boundaries of domains in complex spaces, which in fact are real hypersurfaces (i.e.,particular CR-submanifolds).

ANN 发表于 2025-3-22 04:49:18

Paul Heinrich Heckmann,Elmar Träbert class C.. Denote by {U; x.} a system of coordinate neighborhoods on N, where U is a neighborhood and x. are local coordinates in U, with the indices h, i, j, k, ... taking on values in the range {i, ... , n}. TN and F(N) are respectively the tangent bundle to N and the algebra of differentiable fun

保留 发表于 2025-3-22 11:26:33

https://doi.org/10.1007/978-3-642-71770-3act manifolds (see Blair ,p. 62) are examples of ~R-manifolds. Non-trivial CRmanifolds appeared as boundaries of domains in complex spaces, which in fact are real hypersurfaces (i.e.,particular CR-submanifolds).

可以任性 发表于 2025-3-22 13:09:56

http://reply.papertrans.cn/39/3838/383798/383798_6.png

可以任性 发表于 2025-3-22 20:08:35

http://reply.papertrans.cn/39/3838/383798/383798_7.png

摆动 发表于 2025-3-23 00:42:38

Zur Geschichte der Spieltheorie,Let N be a n-dimensional almost Hermitian manifold with almost complex structure J and with Hermitian metric g. LetH be a real m-dimensional Riemannian manifold isometrically immersed in N.

OGLE 发表于 2025-3-23 02:40:58

Let N be a real (2n + l)-dimensional almost contact metric manifold with structure tensors (φ, ξ, n, g), where φ is atensor field of type (1, 1),ξ is a vector field,n, is a1-form and g is a Riemannian metric on N. These tensor fields are related by (see §of Chapter I). for any vector fields X, Y tangent to N.

labile 发表于 2025-3-23 05:44:08

http://reply.papertrans.cn/39/3838/383798/383798_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Geometry of CR-Submanifolds; Aurel Bejancu Book 1986 D. Reidel Publishing Company, Dordrecht, Holland 1986 Riemannian manifold.curvature.m