obsess
发表于 2025-3-21 16:28:25
书目名称Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0383796<br><br> <br><br>书目名称Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0383796<br><br> <br><br>书目名称Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0383796<br><br> <br><br>书目名称Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0383796<br><br> <br><br>书目名称Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0383796<br><br> <br><br>书目名称Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0383796<br><br> <br><br>书目名称Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0383796<br><br> <br><br>书目名称Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0383796<br><br> <br><br>书目名称Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0383796<br><br> <br><br>书目名称Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0383796<br><br> <br><br>
原谅
发表于 2025-3-21 23:11:39
https://doi.org/10.1007/978-3-663-01878-0 a generalization of it to A proper mappings in Banach spaces. The connection with the Leray-Schauder degree is commented and some applications to the topological degree of normalized duality mappings are made.
Graphite
发表于 2025-3-22 02:37:05
https://doi.org/10.1007/978-3-663-01878-0 a generalization of it to A proper mappings in Banach spaces. The connection with the Leray-Schauder degree is commented and some applications to the topological degree of normalized duality mappings are made.
bypass
发表于 2025-3-22 07:40:33
On the Topological Degree in Finite and Infinite Dimensions, a generalization of it to A proper mappings in Banach spaces. The connection with the Leray-Schauder degree is commented and some applications to the topological degree of normalized duality mappings are made.
多样
发表于 2025-3-22 10:22:15
https://doi.org/10.1007/978-94-009-2121-4Cauchy problem; Finite; Hilbert space; boundary element method; character; feedback; form; geometry; mapping
有特色
发表于 2025-3-22 13:00:05
978-94-010-7454-4Kluwer Academic Publishers 1990
有特色
发表于 2025-3-22 19:12:15
http://reply.papertrans.cn/39/3838/383796/383796_7.png
BOON
发表于 2025-3-23 00:50:21
http://reply.papertrans.cn/39/3838/383796/383796_8.png
Nomogram
发表于 2025-3-23 01:50:09
Analyse und Synthese von Schaltungen,In this chapter we shall characterize some classes of Banach spaces, among which strictly convex spaces, uniformly convex spaces and reflexive Banach spaces in terms of properties of the duality mapping such as continuity, injectivity or surjectivity. Some applications to L. and 1. spaces are given.
预测
发表于 2025-3-23 06:31:03
http://reply.papertrans.cn/39/3838/383796/383796_10.png