宣告无效 发表于 2025-3-21 19:02:17

书目名称Geometry of Algebraic Curves影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0383795<br><br>        <br><br>书目名称Geometry of Algebraic Curves影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0383795<br><br>        <br><br>书目名称Geometry of Algebraic Curves网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0383795<br><br>        <br><br>书目名称Geometry of Algebraic Curves网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0383795<br><br>        <br><br>书目名称Geometry of Algebraic Curves被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0383795<br><br>        <br><br>书目名称Geometry of Algebraic Curves被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0383795<br><br>        <br><br>书目名称Geometry of Algebraic Curves年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0383795<br><br>        <br><br>书目名称Geometry of Algebraic Curves年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0383795<br><br>        <br><br>书目名称Geometry of Algebraic Curves读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0383795<br><br>        <br><br>书目名称Geometry of Algebraic Curves读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0383795<br><br>        <br><br>

originality 发表于 2025-3-21 21:27:35

Cellular decomposition of moduli spaces,the action of the Teichmüller modular group. We then extend this decomposition to the bordification of Teichmüller space introduced in Chapter XV. By equivariance, this provides orbicellular decompositions of the moduli spaces of pointed Riemann surfaces and of suitable compactifications.

tattle 发表于 2025-3-22 02:06:00

First consequences of the cellular decomposition,omology of moduli of smooth and stable curves. Based on the cellular decomposition, and following Kontsevich, we then give combinatorial expressions for the classes of the point bundles and for a volume form on moduli, which are both of central importance in the next chapter.

cavity 发表于 2025-3-22 06:39:06

,Ausblick auf weitere Zusammenhänge,zation for families of nodal curves. We close the chapter by studying the topology of families of smooth curves degenerating to curves with nodes, and in particular by discussing, in this context, vanishing cycles and the Picard–Lefschetz transformation.

命令变成大炮 发表于 2025-3-22 10:24:59

Regelung mit einem Integralregler (I)to find numerical inequalities among cycles in moduli spaces and, consequently, positivity results. Using the same techniques, we then prove the ampleness of Mumford’s class .., and hence the projectivity of ..

Triglyceride 发表于 2025-3-22 15:30:34

http://reply.papertrans.cn/39/3838/383795/383795_6.png

Triglyceride 发表于 2025-3-22 20:33:29

Einführung in die Regelungstechniksible covers, we then treat the quotient representation of the compactified moduli spaces. In this case, in order to prove that the variety . is smooth at points of its boundary, the fundamental tool is the Picard–Lefschetz theory and the study of the local monodromy action.

Aqueous-Humor 发表于 2025-3-22 23:33:51

Einführung in die Röntgenfeinstrukturanalyseof Witten’s conjecture. Following a brief review of equivariant cohomology, we then present Harer and Zagier’s computation of the virtual Euler–Poincaré characteristics of moduli spaces of smooth curves. We end the chapter with a very quick tour of Gromov–Witten invariants.

PACK 发表于 2025-3-23 02:47:32

Nodal curves,zation for families of nodal curves. We close the chapter by studying the topology of families of smooth curves degenerating to curves with nodes, and in particular by discussing, in this context, vanishing cycles and the Picard–Lefschetz transformation.

排他 发表于 2025-3-23 06:58:04

Projectivity of the moduli space of stable curves,to find numerical inequalities among cycles in moduli spaces and, consequently, positivity results. Using the same techniques, we then prove the ampleness of Mumford’s class .., and hence the projectivity of ..
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Geometry of Algebraic Curves; Volume II with a con Enrico Arbarello,Maurizio Cornalba,Phillip A. Grif Textbook 2011 Springer-Verlag Berlin