黑暗社会 发表于 2025-3-21 17:20:00
书目名称Geometry and Vision影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0383786<br><br> <br><br>书目名称Geometry and Vision影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0383786<br><br> <br><br>书目名称Geometry and Vision网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0383786<br><br> <br><br>书目名称Geometry and Vision网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0383786<br><br> <br><br>书目名称Geometry and Vision被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0383786<br><br> <br><br>书目名称Geometry and Vision被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0383786<br><br> <br><br>书目名称Geometry and Vision年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0383786<br><br> <br><br>书目名称Geometry and Vision年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0383786<br><br> <br><br>书目名称Geometry and Vision读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0383786<br><br> <br><br>书目名称Geometry and Vision读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0383786<br><br> <br><br>慢慢冲刷 发表于 2025-3-21 21:25:40
http://reply.papertrans.cn/39/3838/383786/383786_2.png有权威 发表于 2025-3-22 02:25:22
Conference proceedings 2021ary 2021. Due to the COVID-19 pandemic the conference was held in partially virtual format. .The 29 papers were thoroughly reviewed and selected from 50 submissions. They cover topics in areas of digital geometry, graphics, image and video technologies, computer vision, and multimedia technologies..额外的事 发表于 2025-3-22 08:00:29
,Zentralität und Prestige in Netzwerken,without privacy protection, as current methods for privacy preservation will slow down model training and testing. In order to resolve this problem, we develop a new noise generating method based on information entropy by using differential privacy for betterment the privacy protection which owns thOmniscient 发表于 2025-3-22 10:44:24
http://reply.papertrans.cn/39/3838/383786/383786_5.png突变 发表于 2025-3-22 15:09:54
,Analyse von Schalt- und Übergangsvorgängen,s, namely, Faster R-CNN and YOLOv5, representing two-stage and one-stage algorithms, are employed to conduct tree leaves detection. Our results show that YOLOv5 model obviously outperforms to the Faster R-CNN in the speed of both model training and object detection. The difference between these two突变 发表于 2025-3-22 17:31:58
Schleifen- und Schnittmengenanalyse, motivated researchers to design automatic diagnostic systems. Image segmentation is one of the crucial and challenging steps in the design of a computer-aided diagnosis system owing to the presence of low contrast between skin lesion and background, noise artifacts, color variations, and irregularmendacity 发表于 2025-3-22 23:22:33
https://doi.org/10.1007/978-3-476-05046-5peness automatically. Apple ripeness classification is a problem in computer vision and deep learning for pattern classification. In this paper, the ripeness of apples in digital images will be classified by using convolutional neural networks (CNN or ConvNets) in deep learning. The goal of this proMIRE 发表于 2025-3-23 04:09:32
http://reply.papertrans.cn/39/3838/383786/383786_9.pnginvade 发表于 2025-3-23 07:57:04
https://doi.org/10.1007/978-3-476-05191-2missed detection or incorrect positioning. In this paper, we propose a traffic sign recognition algorithm based on Faster R-CNN and YOLOv5. Firstly, we conduct image preprocessing by using guided image filtering for the input image to remove noises. The processed images are imported into the neural