DART 发表于 2025-3-21 18:56:12
书目名称Geometry and Topology of Manifolds影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0383785<br><br> <br><br>书目名称Geometry and Topology of Manifolds影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0383785<br><br> <br><br>书目名称Geometry and Topology of Manifolds网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0383785<br><br> <br><br>书目名称Geometry and Topology of Manifolds网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0383785<br><br> <br><br>书目名称Geometry and Topology of Manifolds被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0383785<br><br> <br><br>书目名称Geometry and Topology of Manifolds被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0383785<br><br> <br><br>书目名称Geometry and Topology of Manifolds年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0383785<br><br> <br><br>书目名称Geometry and Topology of Manifolds年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0383785<br><br> <br><br>书目名称Geometry and Topology of Manifolds读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0383785<br><br> <br><br>书目名称Geometry and Topology of Manifolds读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0383785<br><br> <br><br>无脊椎 发表于 2025-3-21 20:31:31
Gluing Principle for Orbifold Stratified Spaces,ilizes the notion of linear stratification on the gluing bundles for the orbifold stratified spaces. We introduce a concept of good gluing structure to ensure a smooth structure on the stratified space. As an application, we provide an orbifold structure on the coarse moduli space . of stable genus采纳 发表于 2025-3-22 01:17:36
,Applications of the Affine Structures on the Teichmüller Spaces,olds, a global splitting property of these Hodge bundles. We also prove that a compact Calabi–Yau manifold can not be deformed to its complex conjugate. These results answer certain open questions in the subject. A general result about certain period map to be bi-holomorphic from the Hodge metric cocharacteristic 发表于 2025-3-22 07:44:54
Critical Points of the Weighted Area Functional,t is, self-shrinkers of mean curvature flow in Euclidean spaces and examples of compact self-shrinkers are discussed. We also review properties of critical points for weighted area functional for weighted volume-preserving variations, that is, .-hypersurfaces of weighted volume-preserving mean curva单独 发表于 2025-3-22 11:12:48
Can One Hear the Shape of a Group?,metrics on discrete groups, discussed its connection to a conjecture by Margulis, and proved some results for “total relatively hyperbolic groups” in Koji Fujiwara, Journal of Topology and Analysis, .(2), 345–359 (2015). This is a note from my talk on that paper and mainly discuss the connection betMinuet 发表于 2025-3-22 13:58:02
Unobstructed Deformations of Generalized Complex Structures Induced by , Logarithmic Symplectic Strtic structures in the holomorphic category. We show that the generalized complex structure induced by a . logarithmic symplectic structure has unobstructed deformations which are parametrized by an open set of the second de Rham cohomology group of the complement of type changing loci if the type chMinuet 发表于 2025-3-22 17:19:50
http://reply.papertrans.cn/39/3838/383785/383785_7.pngChemotherapy 发表于 2025-3-22 22:20:05
http://reply.papertrans.cn/39/3838/383785/383785_8.pngconifer 发表于 2025-3-23 03:28:56
http://reply.papertrans.cn/39/3838/383785/383785_9.pngLITHE 发表于 2025-3-23 08:30:52
http://reply.papertrans.cn/39/3838/383785/383785_10.png