Clinical-Trial 发表于 2025-3-21 19:55:31
书目名称Geometry and Dynamics of Integrable Systems影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0383768<br><br> <br><br>书目名称Geometry and Dynamics of Integrable Systems影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0383768<br><br> <br><br>书目名称Geometry and Dynamics of Integrable Systems网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0383768<br><br> <br><br>书目名称Geometry and Dynamics of Integrable Systems网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0383768<br><br> <br><br>书目名称Geometry and Dynamics of Integrable Systems被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0383768<br><br> <br><br>书目名称Geometry and Dynamics of Integrable Systems被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0383768<br><br> <br><br>书目名称Geometry and Dynamics of Integrable Systems年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0383768<br><br> <br><br>书目名称Geometry and Dynamics of Integrable Systems年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0383768<br><br> <br><br>书目名称Geometry and Dynamics of Integrable Systems读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0383768<br><br> <br><br>书目名称Geometry and Dynamics of Integrable Systems读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0383768<br><br> <br><br>overture 发表于 2025-3-21 23:44:45
Textbook 2016ee major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable systems on the basis of their relation to bi-Hamiltonian systems; and the generalization of integrable systems to the non-Hamiltonian settings. All thexceed 发表于 2025-3-22 01:34:04
2297-0304 Singularities of bi-Hamiltonian systems, stability analysis,.Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Gareject 发表于 2025-3-22 05:44:05
https://doi.org/10.1007/978-3-642-92904-5e sixties of the twentieth century by Kolchin, through the introduction of the modern algebraic abstract terminology and the obtention of new important results, see and references therein. Today, the standard reference of this theory is the monograph .变形 发表于 2025-3-22 12:11:52
http://reply.papertrans.cn/39/3838/383768/383768_5.png轻浮女 发表于 2025-3-22 15:10:49
http://reply.papertrans.cn/39/3838/383768/383768_6.png轻浮女 发表于 2025-3-22 17:19:54
http://reply.papertrans.cn/39/3838/383768/383768_7.png责怪 发表于 2025-3-22 22:31:47
978-3-319-33502-5Springer International Publishing Switzerland 2016不可接触 发表于 2025-3-23 05:03:00
http://reply.papertrans.cn/39/3838/383768/383768_9.png分开如此和谐 发表于 2025-3-23 07:38:29
https://doi.org/10.1007/978-3-642-92904-5 a Galois theory for linear differential equations. This field of study, henceforth called Picard–Vessiot theory, was continued from the forties to the sixties of the twentieth century by Kolchin, through the introduction of the modern algebraic abstract terminology and the obtention of new importan