愚蠢地活 发表于 2025-3-21 17:39:58
书目名称Geometry and Analysis of Metric Spaces via Weighted Partitions影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0383762<br><br> <br><br>书目名称Geometry and Analysis of Metric Spaces via Weighted Partitions影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0383762<br><br> <br><br>书目名称Geometry and Analysis of Metric Spaces via Weighted Partitions网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0383762<br><br> <br><br>书目名称Geometry and Analysis of Metric Spaces via Weighted Partitions网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0383762<br><br> <br><br>书目名称Geometry and Analysis of Metric Spaces via Weighted Partitions被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0383762<br><br> <br><br>书目名称Geometry and Analysis of Metric Spaces via Weighted Partitions被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0383762<br><br> <br><br>书目名称Geometry and Analysis of Metric Spaces via Weighted Partitions年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0383762<br><br> <br><br>书目名称Geometry and Analysis of Metric Spaces via Weighted Partitions年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0383762<br><br> <br><br>书目名称Geometry and Analysis of Metric Spaces via Weighted Partitions读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0383762<br><br> <br><br>书目名称Geometry and Analysis of Metric Spaces via Weighted Partitions读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0383762<br><br> <br><br>疯狂 发表于 2025-3-21 22:07:55
http://reply.papertrans.cn/39/3838/383762/383762_2.png陪审团每个人 发表于 2025-3-22 01:36:16
http://reply.papertrans.cn/39/3838/383762/383762_3.png征税 发表于 2025-3-22 06:09:49
978-3-030-54153-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerlcancer 发表于 2025-3-22 09:04:58
http://reply.papertrans.cn/39/3838/383762/383762_5.png减少 发表于 2025-3-22 16:15:22
http://reply.papertrans.cn/39/3838/383762/383762_6.png减少 发表于 2025-3-22 19:37:11
https://doi.org/10.1007/978-3-030-54154-5Ahlfors Regular Conformal Dimension; Gromov Hyperbolicity; Infinite Graph; Metrics; Partition革新 发表于 2025-3-22 21:32:58
http://reply.papertrans.cn/39/3838/383762/383762_8.png指数 发表于 2025-3-23 03:42:08
https://doi.org/10.1007/978-3-662-01432-5In this section, we define the notion of bi-Lipschitz equivalence of weight functions. Originally the definition, Definition 3.1.1, only concerns the tree structure . and has nothing to do with a partition of a space.oncologist 发表于 2025-3-23 07:43:14
Einführung in die AutomatentheorieIn this section, we present a sufficient condition for the existence of an adapted metric to a given weight function. The sufficient condition obtained in this section will be used to construct an Ahlfors regular metric later.