Alacrity 发表于 2025-3-21 19:20:00
书目名称Geometrical and Topological Methods in Gauge Theories影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0383670<br><br> <br><br>书目名称Geometrical and Topological Methods in Gauge Theories影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0383670<br><br> <br><br>书目名称Geometrical and Topological Methods in Gauge Theories网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0383670<br><br> <br><br>书目名称Geometrical and Topological Methods in Gauge Theories网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0383670<br><br> <br><br>书目名称Geometrical and Topological Methods in Gauge Theories被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0383670<br><br> <br><br>书目名称Geometrical and Topological Methods in Gauge Theories被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0383670<br><br> <br><br>书目名称Geometrical and Topological Methods in Gauge Theories年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0383670<br><br> <br><br>书目名称Geometrical and Topological Methods in Gauge Theories年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0383670<br><br> <br><br>书目名称Geometrical and Topological Methods in Gauge Theories读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0383670<br><br> <br><br>书目名称Geometrical and Topological Methods in Gauge Theories读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0383670<br><br> <br><br>潜伏期 发表于 2025-3-21 20:35:23
Metric and connection theories of gravity: The gauge theories of spacetime symmetry,corresponding principal bundles. The most familiar are: the Lorentz group = 0(3,1,8) which uses the bundle of orthonormal frames, GL(4,R) with the general linear frame bundle, the Poincare group = IO(3,1,R) with the affine orthonormal frame bundle, and the spinor group, SL(2,C), with the orthonormalMINT 发表于 2025-3-22 04:21:24
https://doi.org/10.1007/978-3-642-38931-3(these are also defined by Kostant but we present a directly geometrical definition which is more convenient for our purposes), vector bundles, and principal bundles..With these notions in place, we can define a graded G-structure on a graded manifold In the simplest non-trivial case, this leads imm证实 发表于 2025-3-22 08:28:54
Education and IT Policy: Virtual Reality?,corresponding principal bundles. The most familiar are: the Lorentz group = 0(3,1,8) which uses the bundle of orthonormal frames, GL(4,R) with the general linear frame bundle, the Poincare group = IO(3,1,R) with the affine orthonormal frame bundle, and the spinor group, SL(2,C), with the orthonormal发电机 发表于 2025-3-22 12:40:37
978-3-540-10010-2Springer-Verlag Berlin Heidelberg 1980Bumble 发表于 2025-3-22 14:23:17
Geometrical and Topological Methods in Gauge Theories978-3-540-38142-6Series ISSN 0075-8450 Series E-ISSN 1616-6361Bumble 发表于 2025-3-22 19:55:38
0075-8450 Overview: 978-3-540-10010-2978-3-540-38142-6Series ISSN 0075-8450 Series E-ISSN 1616-6361使增至最大 发表于 2025-3-23 00:43:04
http://reply.papertrans.cn/39/3837/383670/383670_8.pngLINES 发表于 2025-3-23 04:14:35
http://reply.papertrans.cn/39/3837/383670/383670_9.png裙带关系 发表于 2025-3-23 08:24:08
On groups of gauge transformations,Groups of gauge transformations (gauge groups) are defined in the framework of principal bundles. The gauge group of a trivial bundle is exhibited and the gauge aspect of gravitation is compared to that of Yang-Mills theories.