决绝
发表于 2025-3-21 17:37:28
书目名称Geometrical Optics and Related Topics影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0383663<br><br> <br><br>书目名称Geometrical Optics and Related Topics影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0383663<br><br> <br><br>书目名称Geometrical Optics and Related Topics网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0383663<br><br> <br><br>书目名称Geometrical Optics and Related Topics网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0383663<br><br> <br><br>书目名称Geometrical Optics and Related Topics被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0383663<br><br> <br><br>书目名称Geometrical Optics and Related Topics被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0383663<br><br> <br><br>书目名称Geometrical Optics and Related Topics年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0383663<br><br> <br><br>书目名称Geometrical Optics and Related Topics年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0383663<br><br> <br><br>书目名称Geometrical Optics and Related Topics读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0383663<br><br> <br><br>书目名称Geometrical Optics and Related Topics读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0383663<br><br> <br><br>
Notify
发表于 2025-3-21 21:46:33
http://reply.papertrans.cn/39/3837/383663/383663_2.png
defile
发表于 2025-3-22 03:06:05
http://reply.papertrans.cn/39/3837/383663/383663_3.png
树上结蜜糖
发表于 2025-3-22 06:05:49
Geometrical Optics and Related Topics978-1-4612-2014-5Series ISSN 1421-1750 Series E-ISSN 2374-0280
贿赂
发表于 2025-3-22 11:58:40
http://reply.papertrans.cn/39/3837/383663/383663_5.png
CRAMP
发表于 2025-3-22 14:12:08
https://doi.org/10.1007/978-3-030-45843-0. distance, are defined in terms of the Glimm interaction potential. They are relevant in the study of nonlinear hyperbolic systems of conservation laws, being contractive w.r.t. the corresponding flow of solutions.
CRAMP
发表于 2025-3-22 18:13:31
Georg Glaeser,Daniel Abed-Navandiic systems of the form . with smooth compactly supported initial data in ... Here . ≥ 1 and .: .. → . is a given .. function. We shall call (0.1) a hyperbolic system of Hamiltonian type (see ). For the sake of simplicity, we shall concentrate our attention to the special case . with ., . > 1.
Mirage
发表于 2025-3-22 23:48:27
http://reply.papertrans.cn/39/3837/383663/383663_8.png
珐琅
发表于 2025-3-23 04:40:15
http://reply.papertrans.cn/39/3837/383663/383663_9.png
辩论的终结
发表于 2025-3-23 08:43:33
http://reply.papertrans.cn/39/3837/383663/383663_10.png