徽章 发表于 2025-3-21 17:49:37
书目名称Geometrical Aspects of Functional Analysis影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0383647<br><br> <br><br>书目名称Geometrical Aspects of Functional Analysis影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0383647<br><br> <br><br>书目名称Geometrical Aspects of Functional Analysis网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0383647<br><br> <br><br>书目名称Geometrical Aspects of Functional Analysis网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0383647<br><br> <br><br>书目名称Geometrical Aspects of Functional Analysis被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0383647<br><br> <br><br>书目名称Geometrical Aspects of Functional Analysis被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0383647<br><br> <br><br>书目名称Geometrical Aspects of Functional Analysis年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0383647<br><br> <br><br>书目名称Geometrical Aspects of Functional Analysis年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0383647<br><br> <br><br>书目名称Geometrical Aspects of Functional Analysis读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0383647<br><br> <br><br>书目名称Geometrical Aspects of Functional Analysis读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0383647<br><br> <br><br>atopic 发表于 2025-3-21 22:01:04
http://reply.papertrans.cn/39/3837/383647/383647_2.png纹章 发表于 2025-3-22 02:02:07
http://reply.papertrans.cn/39/3837/383647/383647_3.pngEtymology 发表于 2025-3-22 05:22:21
Patricia M. Hillebrandt B.Sc.(Econ.), Ph.D.We give an exposition of the “hard case” of Bourgain‘s theorem, that a Banach space . has RNP iff each subspace with a finite dimensional decomposition has RNP. We reproduce essentially Bourgain‘s arguments, by explaining the ideas underlying the proof and giving slightly altered arguments for some of the technical details.Strength 发表于 2025-3-22 09:44:59
On a theorem of J. Bourgain on finite dimensional decompositions and the radon-nikodym property,We give an exposition of the “hard case” of Bourgain‘s theorem, that a Banach space . has RNP iff each subspace with a finite dimensional decomposition has RNP. We reproduce essentially Bourgain‘s arguments, by explaining the ideas underlying the proof and giving slightly altered arguments for some of the technical details.不合 发表于 2025-3-22 13:26:24
http://reply.papertrans.cn/39/3837/383647/383647_6.png不合 发表于 2025-3-22 19:54:49
978-3-540-18103-3Springer-Verlag Berlin Heidelberg 1987lipoatrophy 发表于 2025-3-23 00:55:28
Geometrical Aspects of Functional Analysis978-3-540-47771-6Series ISSN 0075-8434 Series E-ISSN 1617-9692改革运动 发表于 2025-3-23 03:17:36
http://reply.papertrans.cn/39/3837/383647/383647_9.png继而发生 发表于 2025-3-23 06:26:05
,On lattice packing of convex symmetric sets in ℜn,