FAWN 发表于 2025-3-28 16:18:32

Kevin McDermott,Vítězslav Sommerrs, which represent the objects of interest. In the second type, the data describe the similarities (or dissimilarities) of objects that cannot be digitized or hidden. The output of a DR processing with an input of the first type is a low-dimensional data set, having the same cardinality as the inpu

讨人喜欢 发表于 2025-3-28 22:45:20

http://reply.papertrans.cn/39/3837/383612/383612_42.png

Kinetic 发表于 2025-3-29 02:59:12

http://reply.papertrans.cn/39/3837/383612/383612_43.png

painkillers 发表于 2025-3-29 04:32:41

http://reply.papertrans.cn/39/3837/383612/383612_44.png

使更活跃 发表于 2025-3-29 09:24:38

http://reply.papertrans.cn/39/3837/383612/383612_45.png

迷住 发表于 2025-3-29 13:27:20

Jozef Lacko,Ladislav Kusňír,Ivan Slameňetween the pairs of all neighbors of each point in the data set. Since the method keeps the local maximum variance in dimensionality reduction processing, it is called maximum variance unfolding (MVU). Like multidimensional scaling (MDS), MVU can be applied to the cases that only the local similarit

储备 发表于 2025-3-29 18:25:25

http://reply.papertrans.cn/39/3837/383612/383612_47.png

flaggy 发表于 2025-3-29 20:02:42

http://reply.papertrans.cn/39/3837/383612/383612_48.png

geriatrician 发表于 2025-3-30 00:05:30

https://doi.org/10.1007/978-3-322-82834-7n a low-dimentional manifold .. Let . be the coordinate mapping on . so that . = .(.)is a DR of .. Each component of the coordinate mapping . is a linear function on .. Hence, all components of . nearly reside on the numerically null space of the Laplace-Beltrsmi operator on .. In Leigs method, a La

领袖气质 发表于 2025-3-30 07:07:39

https://doi.org/10.1007/978-1-4612-0553-1 conceptual framework of HLLE may be viewed as a modification of the Laplacian Eigenmaps framework. Let . be the observed high-dimensional data which reside on a low-dimentional manifold . and . be the coordinate mapping on . so that . = .(.)is a DR of .. In Laplacian eigenmaps method, . is found in
页: 1 2 3 4 [5] 6
查看完整版本: Titlebook: Geometric Structure of High-Dimensional Data and Dimensionality Reduction; Jianzhong Wang Book 2012 Higher Education Press, Beijing and Sp