强烈的愿望 发表于 2025-3-21 18:29:17

书目名称Geometric Singular Perturbation Theory Beyond the Standard Form影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0383610<br><br>        <br><br>书目名称Geometric Singular Perturbation Theory Beyond the Standard Form影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0383610<br><br>        <br><br>书目名称Geometric Singular Perturbation Theory Beyond the Standard Form网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0383610<br><br>        <br><br>书目名称Geometric Singular Perturbation Theory Beyond the Standard Form网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0383610<br><br>        <br><br>书目名称Geometric Singular Perturbation Theory Beyond the Standard Form被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0383610<br><br>        <br><br>书目名称Geometric Singular Perturbation Theory Beyond the Standard Form被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0383610<br><br>        <br><br>书目名称Geometric Singular Perturbation Theory Beyond the Standard Form年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0383610<br><br>        <br><br>书目名称Geometric Singular Perturbation Theory Beyond the Standard Form年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0383610<br><br>        <br><br>书目名称Geometric Singular Perturbation Theory Beyond the Standard Form读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0383610<br><br>        <br><br>书目名称Geometric Singular Perturbation Theory Beyond the Standard Form读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0383610<br><br>        <br><br>

Keratectomy 发表于 2025-3-21 20:13:38

http://reply.papertrans.cn/39/3837/383610/383610_2.png

Perigee 发表于 2025-3-22 03:37:58

http://reply.papertrans.cn/39/3837/383610/383610_3.png

sacrum 发表于 2025-3-22 06:47:47

Pseudo Singularities and Canards,utputs under system parameter variations. The time-scale splitting in our singular perturbation problems creates additional complexity and sometimes surprising, counter-intuitive behaviour. We start with a couple of examples to motivate the development of the corresponding theory.

尽忠 发表于 2025-3-22 08:59:07

http://reply.papertrans.cn/39/3837/383610/383610_5.png

使激动 发表于 2025-3-22 13:01:39

https://doi.org/10.1057/9781137315762utputs under system parameter variations. The time-scale splitting in our singular perturbation problems creates additional complexity and sometimes surprising, counter-intuitive behaviour. We start with a couple of examples to motivate the development of the corresponding theory.

使激动 发表于 2025-3-22 20:56:50

Introduction,s reflect these multiple-scale features as well. Mathematical models of such multiple-scale systems are considered singular perturbation problems with two-scale problems as the most prominent. Singular perturbation theory studies systems featuring a small perturbation parameter reflecting the scale

发酵剂 发表于 2025-3-23 00:41:51

Loss of Normal Hyperbolicity,tem to switch between slow and fast dynamics as observed in many relaxation oscillator models; see Chap. .. Geometrically, loss of normal hyperbolicity occurs generically along (a union of) codimension-one submanifold(s) of . where a nontrivial eigenvalue of the layer problem crosses the imaginary a

squander 发表于 2025-3-23 01:28:17

Pseudo Singularities and Canards,o far: .Partial answers to the above questions can be found in classic . [.] which focuses on understanding significant changes in dynamical systems outputs under system parameter variations. The time-scale splitting in our singular perturbation problems creates additional complexity and sometimes s

Memorial 发表于 2025-3-23 06:48:07

http://reply.papertrans.cn/39/3837/383610/383610_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Geometric Singular Perturbation Theory Beyond the Standard Form; Martin Wechselberger Book 2020 The Editor(s) (if applicable) and The Auth