Conformist 发表于 2025-3-21 16:13:48
书目名称Geometric Multivector Analysis影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0383577<br><br> <br><br>书目名称Geometric Multivector Analysis影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0383577<br><br> <br><br>书目名称Geometric Multivector Analysis网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0383577<br><br> <br><br>书目名称Geometric Multivector Analysis网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0383577<br><br> <br><br>书目名称Geometric Multivector Analysis被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0383577<br><br> <br><br>书目名称Geometric Multivector Analysis被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0383577<br><br> <br><br>书目名称Geometric Multivector Analysis年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0383577<br><br> <br><br>书目名称Geometric Multivector Analysis年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0383577<br><br> <br><br>书目名称Geometric Multivector Analysis读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0383577<br><br> <br><br>书目名称Geometric Multivector Analysis读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0383577<br><br> <br><br>alliance 发表于 2025-3-21 23:29:40
http://reply.papertrans.cn/39/3836/383577/383577_2.png不能平静 发表于 2025-3-22 04:20:44
http://reply.papertrans.cn/39/3836/383577/383577_3.png拱形大桥 发表于 2025-3-22 06:26:15
978-3-030-31413-2Springer Nature Switzerland AG 2019Coma704 发表于 2025-3-22 10:57:30
http://reply.papertrans.cn/39/3836/383577/383577_5.pnginsurgent 发表于 2025-3-22 15:06:45
http://reply.papertrans.cn/39/3836/383577/383577_6.pnginsurgent 发表于 2025-3-22 21:03:45
http://reply.papertrans.cn/39/3836/383577/383577_7.png假装是我 发表于 2025-3-22 21:33:51
Nguyen Tran Cam Linh,Nguyen Hoang ChauThis chapter builds on Chapter 2. Besides a solid background in linear algebra, the reader is assumed to be familiar with the algebra and geometry of complex numbers.眨眼 发表于 2025-3-23 01:39:52
http://reply.papertrans.cn/39/3836/383577/383577_9.pngOratory 发表于 2025-3-23 06:32:27
Distributions- und HandelslogistikThis chapter builds on Chapters 3 and 4, and uses the material in Sections 1.4 and 1.5. Any knowledge of representation theory is helpful, but the presentation is self-contained and should be accessible to anyone with a solid background in linear algebra.