Embolism
发表于 2025-3-21 19:55:30
书目名称Geometric Methods and Optimization Problems影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0383542<br><br> <br><br>书目名称Geometric Methods and Optimization Problems影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0383542<br><br> <br><br>书目名称Geometric Methods and Optimization Problems网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0383542<br><br> <br><br>书目名称Geometric Methods and Optimization Problems网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0383542<br><br> <br><br>书目名称Geometric Methods and Optimization Problems被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0383542<br><br> <br><br>书目名称Geometric Methods and Optimization Problems被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0383542<br><br> <br><br>书目名称Geometric Methods and Optimization Problems年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0383542<br><br> <br><br>书目名称Geometric Methods and Optimization Problems年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0383542<br><br> <br><br>书目名称Geometric Methods and Optimization Problems读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0383542<br><br> <br><br>书目名称Geometric Methods and Optimization Problems读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0383542<br><br> <br><br>
射手座
发表于 2025-3-22 00:10:55
http://reply.papertrans.cn/39/3836/383542/383542_2.png
Spinal-Tap
发表于 2025-3-22 03:20:29
Minimum Convex Partitions of Polygonal Domains,be partitioned by linear cuts in the directions from .. Based on this approach, we investigate the complexity status of various partition problems, such as partitions into rectangles, trapezoids, triangles, convex polygons.
横条
发表于 2025-3-22 06:52:56
Book 1999 problems as well as suggesting ways of solutions. Especially in pure mathematics this is ob vious and well-known (examples are the much discussed interplay between lin ear algebra and analytical geometry and several problems in multidimensional analysis). On the other hand, many specialists from
不合
发表于 2025-3-22 12:28:53
https://doi.org/10.1007/978-1-4615-5319-9Median; Partition; calculus; computational geometry; geometry; linear optimization; optimization; combinato
儿童
发表于 2025-3-22 13:37:13
https://doi.org/10.1007/978-3-642-72519-7sted in the location of an additonal point such that the sum of weighted distances to the given points is minimal. Historically correct, this is the (generalized) Fermat-Torricelli problem, and in location science it is also called the Steiner- Weber problem and the 1-median problem, respectively. I
儿童
发表于 2025-3-22 20:41:02
http://reply.papertrans.cn/39/3836/383542/383542_7.png
temperate
发表于 2025-3-22 21:54:58
978-1-4613-7427-5Springer Science+Business Media Dordrecht 1999
IRATE
发表于 2025-3-23 05:03:31
http://reply.papertrans.cn/39/3836/383542/383542_9.png
心痛
发表于 2025-3-23 08:46:06
http://reply.papertrans.cn/39/3836/383542/383542_10.png