frugal 发表于 2025-3-25 04:42:06

http://reply.papertrans.cn/39/3836/383529/383529_21.png

万灵丹 发表于 2025-3-25 11:18:45

http://reply.papertrans.cn/39/3836/383529/383529_22.png

exorbitant 发表于 2025-3-25 15:24:37

Acecainide (N-Acetylprocainamide),ctive complex algebraic group . with an algebro-geometric structure. In this chapter we present a sketch of the treatment with a variety of examples. We also review the notion of stability from the differential and symplectic points of view and explore the idea of maximal unstability.

衣服 发表于 2025-3-25 19:33:09

http://reply.papertrans.cn/39/3836/383529/383529_24.png

RALES 发表于 2025-3-25 23:38:45

http://reply.papertrans.cn/39/3836/383529/383529_25.png

Salivary-Gland 发表于 2025-3-26 01:07:39

http://reply.papertrans.cn/39/3836/383529/383529_26.png

CRASS 发表于 2025-3-26 06:08:32

Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration978-3-030-67829-6Series ISSN 2191-8198 Series E-ISSN 2191-8201

CANT 发表于 2025-3-26 11:08:27

Introduction, variety under a reductive group. The purpose of Geometric Invariant Theory (abbreviated GIT, [., .]) is to provide a way to define a quotient of the variety by the action of the group with an algebro-geometric structure. This way, GIT results assure a good structure for the quotient, giving a posit

漫不经心 发表于 2025-3-26 15:19:38

http://reply.papertrans.cn/39/3836/383529/383529_29.png

Rinne-Test 发表于 2025-3-26 20:49:38

http://reply.papertrans.cn/39/3836/383529/383529_30.png
页: 1 2 [3] 4
查看完整版本: Titlebook: Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration; Alfonso Zamora Saiz,Ronald A. Zúñiga-Rojas Bo