Blood-Vessels 发表于 2025-3-23 13:23:13
http://reply.papertrans.cn/39/3836/383515/383515_11.pngNAV 发表于 2025-3-23 14:06:22
http://reply.papertrans.cn/39/3836/383515/383515_12.png感情 发表于 2025-3-23 20:22:41
https://doi.org/10.1007/978-3-642-75708-2 through basic notions from graph theory and report on facts about planar graphs. Beginning with Section 1.4 we discuss problems from the extremal theory for geometric graphs. That is, we deal with questions of Turán type: How many edges can a geometric graph avoiding a specified configuration of edges have?curriculum 发表于 2025-3-24 01:50:35
http://reply.papertrans.cn/39/3836/383515/383515_14.pngBUCK 发表于 2025-3-24 06:20:20
,Geometric Graphs: Turán Problems, through basic notions from graph theory and report on facts about planar graphs. Beginning with Section 1.4 we discuss problems from the extremal theory for geometric graphs. That is, we deal with questions of Turán type: How many edges can a geometric graph avoiding a specified configuration of edges have?考博 发表于 2025-3-24 08:40:30
http://reply.papertrans.cn/39/3836/383515/383515_16.pngENACT 发表于 2025-3-24 14:11:36
http://reply.papertrans.cn/39/3836/383515/383515_17.pngpropose 发表于 2025-3-24 17:35:20
Geometric Graphs and Arrangements978-3-322-80303-0Series ISSN 0932-7134 Series E-ISSN 2512-7039GLUE 发表于 2025-3-24 22:37:27
http://reply.papertrans.cn/39/3836/383515/383515_19.png不近人情 发表于 2025-3-25 02:20:40
https://doi.org/10.1007/978-3-322-80303-0Combinatorial Problems; Draw; Geometrie; Graphentheorie; Kombinatorik; Schnyder Woods; Topological; Triangu