Animosity
发表于 2025-3-21 16:49:12
书目名称Geometric Flows and the Geometry of Space-time影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0383509<br><br> <br><br>书目名称Geometric Flows and the Geometry of Space-time影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0383509<br><br> <br><br>书目名称Geometric Flows and the Geometry of Space-time网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0383509<br><br> <br><br>书目名称Geometric Flows and the Geometry of Space-time网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0383509<br><br> <br><br>书目名称Geometric Flows and the Geometry of Space-time被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0383509<br><br> <br><br>书目名称Geometric Flows and the Geometry of Space-time被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0383509<br><br> <br><br>书目名称Geometric Flows and the Geometry of Space-time年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0383509<br><br> <br><br>书目名称Geometric Flows and the Geometry of Space-time年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0383509<br><br> <br><br>书目名称Geometric Flows and the Geometry of Space-time读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0383509<br><br> <br><br>书目名称Geometric Flows and the Geometry of Space-time读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0383509<br><br> <br><br>
Dungeon
发表于 2025-3-21 23:46:15
http://reply.papertrans.cn/39/3836/383509/383509_2.png
种类
发表于 2025-3-22 01:09:51
Book 2018. Baum and T. Leistner) written by leading experts in these fields.. It grew out of the summer school “Geometric flows and the geometry of space-time” held in Hamburg (2016) and provides an excellent introduction for students of mathematics and theoretical physics to important themes of current res
Trochlea
发表于 2025-3-22 06:04:28
https://doi.org/10.1007/978-94-015-2808-5htlike vector field or a parallel lightlike spinor field with initial conditions on a spacelike hypersurface. Thereby, we derive a second order evolution equation of Cauchy-Kowalevski type that can be solved in the analytic setting as well as an appropriate first order quasilinear hyperbolic system that yields a solution in the smooth case.
Brittle
发表于 2025-3-22 12:43:17
Lorentzian Geometry: Holonomy, Spinors, and Cauchy Problems,htlike vector field or a parallel lightlike spinor field with initial conditions on a spacelike hypersurface. Thereby, we derive a second order evolution equation of Cauchy-Kowalevski type that can be solved in the analytic setting as well as an appropriate first order quasilinear hyperbolic system that yields a solution in the smooth case.
新星
发表于 2025-3-22 13:40:06
http://reply.papertrans.cn/39/3836/383509/383509_6.png
新星
发表于 2025-3-22 17:25:28
Book 2018 held in Hamburg (2016) and provides an excellent introduction for students of mathematics and theoretical physics to important themes of current research in global analysis, differential geometry and mathematical physics.
Incommensurate
发表于 2025-3-23 00:27:16
http://reply.papertrans.cn/39/3836/383509/383509_8.png
扩大
发表于 2025-3-23 01:35:42
http://reply.papertrans.cn/39/3836/383509/383509_9.png
Genistein
发表于 2025-3-23 06:27:56
http://reply.papertrans.cn/39/3836/383509/383509_10.png