Animosity 发表于 2025-3-21 16:49:12

书目名称Geometric Flows and the Geometry of Space-time影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0383509<br><br>        <br><br>书目名称Geometric Flows and the Geometry of Space-time影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0383509<br><br>        <br><br>书目名称Geometric Flows and the Geometry of Space-time网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0383509<br><br>        <br><br>书目名称Geometric Flows and the Geometry of Space-time网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0383509<br><br>        <br><br>书目名称Geometric Flows and the Geometry of Space-time被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0383509<br><br>        <br><br>书目名称Geometric Flows and the Geometry of Space-time被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0383509<br><br>        <br><br>书目名称Geometric Flows and the Geometry of Space-time年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0383509<br><br>        <br><br>书目名称Geometric Flows and the Geometry of Space-time年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0383509<br><br>        <br><br>书目名称Geometric Flows and the Geometry of Space-time读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0383509<br><br>        <br><br>书目名称Geometric Flows and the Geometry of Space-time读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0383509<br><br>        <br><br>

Dungeon 发表于 2025-3-21 23:46:15

http://reply.papertrans.cn/39/3836/383509/383509_2.png

种类 发表于 2025-3-22 01:09:51

Book 2018. Baum and T. Leistner) written by leading experts in these fields.. It grew out of the summer school “Geometric flows and the geometry of space-time” held in  Hamburg (2016) and provides an excellent introduction for students of mathematics and theoretical physics to important themes of current res

Trochlea 发表于 2025-3-22 06:04:28

https://doi.org/10.1007/978-94-015-2808-5htlike vector field or a parallel lightlike spinor field with initial conditions on a spacelike hypersurface. Thereby, we derive a second order evolution equation of Cauchy-Kowalevski type that can be solved in the analytic setting as well as an appropriate first order quasilinear hyperbolic system that yields a solution in the smooth case.

Brittle 发表于 2025-3-22 12:43:17

Lorentzian Geometry: Holonomy, Spinors, and Cauchy Problems,htlike vector field or a parallel lightlike spinor field with initial conditions on a spacelike hypersurface. Thereby, we derive a second order evolution equation of Cauchy-Kowalevski type that can be solved in the analytic setting as well as an appropriate first order quasilinear hyperbolic system that yields a solution in the smooth case.

新星 发表于 2025-3-22 13:40:06

http://reply.papertrans.cn/39/3836/383509/383509_6.png

新星 发表于 2025-3-22 17:25:28

Book 2018 held in  Hamburg (2016) and provides an excellent introduction for students of mathematics and theoretical physics to important themes of current research in global analysis, differential geometry and mathematical physics.

Incommensurate 发表于 2025-3-23 00:27:16

http://reply.papertrans.cn/39/3836/383509/383509_8.png

扩大 发表于 2025-3-23 01:35:42

http://reply.papertrans.cn/39/3836/383509/383509_9.png

Genistein 发表于 2025-3-23 06:27:56

http://reply.papertrans.cn/39/3836/383509/383509_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Geometric Flows and the Geometry of Space-time; Vicente Cortés,Klaus Kröncke,Jan Louis Book 2018 Springer Nature Switzerland AG 2018 geome