轻舟 发表于 2025-3-21 17:53:33
书目名称Geometric Aspects of Functional Analysis影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0383472<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0383472<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0383472<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0383472<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0383472<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0383472<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0383472<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0383472<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0383472<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0383472<br><br> <br><br>不可侵犯 发表于 2025-3-21 22:18:09
,The Lower Bound for Koldobsky’s Slicing Inequality via Random Rounding,and all . . Our bound is optimal, up to the value of the universal constant. It improves slightly upon the results of the first named author and Koldobsky, which included a doubly-logarithmic error. The proof is based on an efficient way of discretizing the unit sphere.模范 发表于 2025-3-22 04:16:13
Two-Sided Estimates for Order Statistics of Log-Concave Random Vectors,uncorrelated coordinates. Our bounds are exact up to multiplicative universal constants in the unconditional case for all . and in the isotropic case for . ≤ . − ... We also derive two-sided estimates for expectations of sums of . largest moduli of coordinates for some classes of random vectors.ABHOR 发表于 2025-3-22 05:38:25
,Further Investigations of Rényi Entropy Power Inequalities and an Entropic Characterization of s-CoBobkov and Chistyakov (IEEE Trans Inform Theory 61(2):708–714, 2015) fails when the Rényi parameter . ∈ (0, 1), we show that random vectors with .-concave densities do satisfy such a Rényi entropy power inequality. Along the way, we establish the convergence in the Central Limit Theorem for Rényi engrieve 发表于 2025-3-22 11:49:36
http://reply.papertrans.cn/39/3835/383472/383472_5.png土产 发表于 2025-3-22 15:52:15
Concentration of the Intrinsic Volumes of a Convex Body,quence of intrinsic volumes. The main result states that the intrinsic volume sequence concentrates sharply around a specific index, called the central intrinsic volume. Furthermore, among all convex bodies whose central intrinsic volume is fixed, an appropriately scaled cube has the intrinsic volum土产 发表于 2025-3-22 17:48:27
Two Remarks on Generalized Entropy Power Inequalities,nicity and entropy comparison of weighted sums of independent identically distributed log-concave random variables. We also present a complex analogue of a recent dependent entropy power inequality of Hao and Jog, and give a very simple proof.正式通知 发表于 2025-3-23 00:56:19
On the Geometry of Random Polytopes,ric random variable that has variance 1, let Γ = (..) be an . × . random matrix whose entries are independent copies of ., and set .., …, .. to be the rows of Γ. Then under minimal assumptions on . and as long as . ≥ .., with high probability大吃大喝 发表于 2025-3-23 05:06:26
http://reply.papertrans.cn/39/3835/383472/383472_9.pngdagger 发表于 2025-3-23 08:42:57
http://reply.papertrans.cn/39/3835/383472/383472_10.png