预兆前 发表于 2025-3-21 16:07:36
书目名称Geometric Aspects of Functional Analysis影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0383466<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0383466<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0383466<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0383466<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0383466<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0383466<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0383466<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0383466<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0383466<br><br> <br><br>书目名称Geometric Aspects of Functional Analysis读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0383466<br><br> <br><br>obscurity 发表于 2025-3-21 23:57:30
http://reply.papertrans.cn/39/3835/383466/383466_2.pngNeonatal 发表于 2025-3-22 01:46:22
http://reply.papertrans.cn/39/3835/383466/383466_3.pngTIA742 发表于 2025-3-22 08:31:42
http://reply.papertrans.cn/39/3835/383466/383466_4.png慢跑鞋 发表于 2025-3-22 10:33:12
http://reply.papertrans.cn/39/3835/383466/383466_5.png暗指 发表于 2025-3-22 13:32:21
http://reply.papertrans.cn/39/3835/383466/383466_6.png暗指 发表于 2025-3-22 19:36:18
,Shephard’s Inequalities, Hodge-Riemann Relations, and a Conjecture of Fedotov,The classic monograph . by Burago and Zalgaller states a conjecture on the validity of higher-order analogues of Shephard’s inequalities, which is attributed to Fedotov. In this note we disprove Fedotov’s conjecture by showing that it contradicts the Hodge-Riemann relations for simple convex polytopamygdala 发表于 2025-3-22 22:12:26
Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices,bler (KL) divergence assuming . satisfies a log-Sobolev inequality and the Hessian of . is bounded. Notably, we do not assume convexity or bounds on higher derivatives. We prove convergence guarantees in Rényi divergence of order . assuming the limit of ULA satisfies isoperimetry, namely either thesavage 发表于 2025-3-23 04:36:49
https://doi.org/10.1007/978-3-319-93272-9 of their present central interests. More precisely, that part of their interests that relates to Asymptotic Geometric Analysis. Many agreed, and I am posting below the short texts I received. After each of them, I will place my comments, as well as some problems that arise when reading these texts.Salivary-Gland 发表于 2025-3-23 08:39:14
https://doi.org/10.1007/978-0-230-21399-9competitive ratio . in any normed space, which is . tight for .. In Euclidean space, our algorithm also achieves competitive ratio ., nearly matching a . lower bound when . is subexponential in .. Our approach extends that of Bubeck et al. (Proceedings of the Fourteenth Annual ACM-SIAM Symposium on