Awkward 发表于 2025-3-21 17:44:17
书目名称Geometric Analysis of Quasilinear Inequalities on Complete Manifolds影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0383452<br><br> <br><br>书目名称Geometric Analysis of Quasilinear Inequalities on Complete Manifolds影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0383452<br><br> <br><br>书目名称Geometric Analysis of Quasilinear Inequalities on Complete Manifolds网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0383452<br><br> <br><br>书目名称Geometric Analysis of Quasilinear Inequalities on Complete Manifolds网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0383452<br><br> <br><br>书目名称Geometric Analysis of Quasilinear Inequalities on Complete Manifolds被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0383452<br><br> <br><br>书目名称Geometric Analysis of Quasilinear Inequalities on Complete Manifolds被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0383452<br><br> <br><br>书目名称Geometric Analysis of Quasilinear Inequalities on Complete Manifolds年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0383452<br><br> <br><br>书目名称Geometric Analysis of Quasilinear Inequalities on Complete Manifolds年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0383452<br><br> <br><br>书目名称Geometric Analysis of Quasilinear Inequalities on Complete Manifolds读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0383452<br><br> <br><br>书目名称Geometric Analysis of Quasilinear Inequalities on Complete Manifolds读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0383452<br><br> <br><br>推迟 发表于 2025-3-22 00:07:13
Book 2021of such thresholds. Further, the book also provides a unified review of recent results in the literature, and creates a bridge with geometry by studying the validity of weak and strong maximum principles at infinity, in the spirit of Omori-Yau’s Hessian and Laplacian principles and subsequent improvopalescence 发表于 2025-3-22 02:43:26
1660-8046 s a bridge with geometry by studying the validity of weak and strong maximum principles at infinity, in the spirit of Omori-Yau’s Hessian and Laplacian principles and subsequent improv978-3-030-62703-4978-3-030-62704-1Series ISSN 1660-8046 Series E-ISSN 1660-8054Obliterate 发表于 2025-3-22 08:32:46
Bruno Bianchini,Luciano Mari,Marco RigoliInvestigates the validity of strong maximum principles, compact support principles and Liouville type theorems.Aims to give a unified view of recent results in the literaturefaddish 发表于 2025-3-22 11:03:45
https://doi.org/10.1057/9780230523364We briefly recall some facts from Riemannian Geometry, mostly to fix notation and conventions. Our main source for the present chapter is P. Petersen’s book. Let (.., 〈 , 〉) be a connected Riemannian manifold. We denote with ∇ the Levi–Civita connection induced by 〈 , 〉, and with . the (4, 0) curvature tensor of ∇, with the usual sign agreementerythema 发表于 2025-3-22 14:35:03
Representations of Internal States,The proof of some of our main results, for instance the (CSP), relies on the construction of a suitable radial solution of (..) or (..) to be compared with a given one. For convenience, hereafter we extend . to an odd function on all of . by settingerythema 发表于 2025-3-22 17:11:43
http://reply.papertrans.cn/39/3835/383452/383452_7.pngascetic 发表于 2025-3-22 21:35:15
Discourse and Diversionary JusticeIn this section, we collect two comparison theorems and a “pasting lemma” for Lip. solutions that will be repeatedly used in the sequel. Throughout the section, we assumeMelanoma 发表于 2025-3-23 04:16:25
http://reply.papertrans.cn/39/3835/383452/383452_9.pnglaceration 发表于 2025-3-23 08:17:58
Monica Heller,Mireille McLaughlinThe aim of this section is to prove Theorem . in the Introduction. We observe that the argument is based on the existence of what we call a “Khas’minskii potential”, according to the following.