Filament 发表于 2025-3-21 17:56:26
书目名称Geometric Analysis and Applications to Quantum Field Theory影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0383448<br><br> <br><br>书目名称Geometric Analysis and Applications to Quantum Field Theory影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0383448<br><br> <br><br>书目名称Geometric Analysis and Applications to Quantum Field Theory网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0383448<br><br> <br><br>书目名称Geometric Analysis and Applications to Quantum Field Theory网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0383448<br><br> <br><br>书目名称Geometric Analysis and Applications to Quantum Field Theory被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0383448<br><br> <br><br>书目名称Geometric Analysis and Applications to Quantum Field Theory被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0383448<br><br> <br><br>书目名称Geometric Analysis and Applications to Quantum Field Theory年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0383448<br><br> <br><br>书目名称Geometric Analysis and Applications to Quantum Field Theory年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0383448<br><br> <br><br>书目名称Geometric Analysis and Applications to Quantum Field Theory读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0383448<br><br> <br><br>书目名称Geometric Analysis and Applications to Quantum Field Theory读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0383448<br><br> <br><br>盖他为秘密 发表于 2025-3-21 21:54:51
,The Knizhnik—Zamolodchikov Equations,ol on “Differential Equations in Geometry and Physics.” This article does not constitute a comprehensive account of all that is known about the KZ equations but, rather, is an introduction to some of the main results intended to motivate the reader to further study. The three main sections can be re带来的感觉 发表于 2025-3-22 01:20:58
Loop Groups and Quantum Fields,stems. The common thread in the discussion is the construction of quantum fields using vertex operators. These examples include the construction and solution of the Luttinger model and other 1+1 dimensional interacting quantum field theories, the construction of anyon field operators on the circle,MAOIS 发表于 2025-3-22 07:48:15
http://reply.papertrans.cn/39/3835/383448/383448_4.pngOWL 发表于 2025-3-22 12:10:10
,Gromov—Witten Invariants and Quantum Cohomology,mplectic manifolds as intersection pairings on the moduli space of pseudoholomorphic curves. The invariants are computed in various examples. We also study the quantum product structure on the cohomology groups and its associativity. In Section 2, we introduce relative Gromov—Witten invariants whenvanquish 发表于 2025-3-22 15:34:56
,The Geometry and Physics of the Seiberg—Witten Equations, the exposition, we will cover several rich aspects of nonperturbative quantum field theory. Attempts have been made to reduce the prerequisites to a minimum and to provide a comprehensive bibliography. Lecture 1 explains classical and quantum pure gauge theory and its supersymmetric versions, withvanquish 发表于 2025-3-22 20:28:47
http://reply.papertrans.cn/39/3835/383448/383448_7.png慢慢流出 发表于 2025-3-22 21:36:58
Geometric Analysis and Applications to Quantum Field Theory978-1-4612-0067-3Series ISSN 0743-1643 Series E-ISSN 2296-505Xdilute 发表于 2025-3-23 03:04:05
https://doi.org/10.1007/978-981-15-1318-3Monopoles are solutions of the Bogomolny equation in ℝ.. They are introduced and an overview is given of various approaches to studying and understanding them: spectral curves, holomorphic bundles on mini-twistor space, Nahm’s equations and rational maps.Prognosis 发表于 2025-3-23 07:26:51
Monopoles,Monopoles are solutions of the Bogomolny equation in ℝ.. They are introduced and an overview is given of various approaches to studying and understanding them: spectral curves, holomorphic bundles on mini-twistor space, Nahm’s equations and rational maps.