GUILE 发表于 2025-3-23 13:13:55

http://reply.papertrans.cn/39/3835/383445/383445_11.png

BLINK 发表于 2025-3-23 17:42:40

http://reply.papertrans.cn/39/3835/383445/383445_12.png

gratify 发表于 2025-3-23 21:32:52

Martin Grötschel,László Lovász,Alexander Schrijver

浪费时间 发表于 2025-3-24 00:21:40

http://reply.papertrans.cn/39/3835/383445/383445_14.png

同音 发表于 2025-3-24 03:05:38

http://reply.papertrans.cn/39/3835/383445/383445_15.png

Graves’-disease 发表于 2025-3-24 09:32:34

http://reply.papertrans.cn/39/3835/383445/383445_16.png

大酒杯 发表于 2025-3-24 12:48:57

Zhixin Qi,Hongzhi Wang,Zejiao Dongous other basic questions of convex geometry from an algorithmic point of view and prove algorithmic analogues of some well-known theorems. Finally, in Section 4.7 we discuss to what extent algorithmic properties of convex bodies are preserved when they are subjected to operations like sum, intersection etc.

Biomarker 发表于 2025-3-24 15:46:27

http://reply.papertrans.cn/39/3835/383445/383445_18.png

MELON 发表于 2025-3-24 20:31:11

https://doi.org/10.1007/978-0-387-93840-0 of the polytopes associated with these problems. We indicate how these results can be employed to derive polynomial time algorithms based on the ellipsoid method and basis reduction. The results of this chapter are presented in a condensed form, to cover as much material as possible.

Free-Radical 发表于 2025-3-25 00:59:45

http://reply.papertrans.cn/39/3835/383445/383445_20.png
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Geometric Algorithms and Combinatorial Optimization; Martin Grötschel,László Lovász,Alexander Schrijver Book 19881st edition Springer-Verl