postpartum 发表于 2025-3-21 19:09:33

书目名称Geodetic Boundary Value Problem: the Equivalence between Molodensky’s and Helmert’s Solutions影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0383109<br><br>        <br><br>书目名称Geodetic Boundary Value Problem: the Equivalence between Molodensky’s and Helmert’s Solutions影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0383109<br><br>        <br><br>书目名称Geodetic Boundary Value Problem: the Equivalence between Molodensky’s and Helmert’s Solutions网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0383109<br><br>        <br><br>书目名称Geodetic Boundary Value Problem: the Equivalence between Molodensky’s and Helmert’s Solutions网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0383109<br><br>        <br><br>书目名称Geodetic Boundary Value Problem: the Equivalence between Molodensky’s and Helmert’s Solutions被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0383109<br><br>        <br><br>书目名称Geodetic Boundary Value Problem: the Equivalence between Molodensky’s and Helmert’s Solutions被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0383109<br><br>        <br><br>书目名称Geodetic Boundary Value Problem: the Equivalence between Molodensky’s and Helmert’s Solutions年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0383109<br><br>        <br><br>书目名称Geodetic Boundary Value Problem: the Equivalence between Molodensky’s and Helmert’s Solutions年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0383109<br><br>        <br><br>书目名称Geodetic Boundary Value Problem: the Equivalence between Molodensky’s and Helmert’s Solutions读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0383109<br><br>        <br><br>书目名称Geodetic Boundary Value Problem: the Equivalence between Molodensky’s and Helmert’s Solutions读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0383109<br><br>        <br><br>

chisel 发表于 2025-3-21 21:14:55

On the Linearization Band,on band, namely the possibility to define many linearized Molodensky problems, starting from different zero order approximations, in such a way that they all lead to the same final solution, at least within pre-established error bounds. In doing so, a flaw in the classical linearization procedure ha

掺和 发表于 2025-3-22 01:50:13

On the Equivalent BVPs of Stokes and Helmert, and Their Relations to the Molodensky BVP by Analytict the boundary values and the solutions of the Helmert Molodensky (HM) and Helmert Stokes (HS) BVPs, and show their equivalence when they are related to each other by the so-called “analytical (downward) continuation” process in linear approximation.

Inordinate 发表于 2025-3-22 05:00:50

http://reply.papertrans.cn/39/3832/383109/383109_4.png

鞭子 发表于 2025-3-22 09:23:19

The Change of Boundary Approach, the actual complicated boundary to a Bjerhammer sphere, solving the corresponding BVP by a Poisson kernel and then going to residuals. A rigorous proof of convergence of the above method is still lacking, although a fine perturbative analysis conducted in Appendix A seems to answer in positive sens

横条 发表于 2025-3-22 16:14:34

The Pseudo-Boundary Value Problem (,-BVP) Interpretation,a condition complementary to harmonicity. Such an approach provide, so to say, the solution of an approximate BVP. The analysis shows that this point of view is capable of explaining the good results obtained up to a first order term, in terms of the ratio between height of the surface . on the sphe

横条 发表于 2025-3-22 18:13:54

One Further Example, Some Remarks and Conclusions,to mimic the effect of a topography by introducing lateral density variations between the two spheres. This still allows analytical continuation solutions and we compare once more Molodensky’s and Helmert’s solutions in terms of DC. The equivalence then comes out quite evidently, showing that if the

虚情假意 发表于 2025-3-23 01:07:49

http://reply.papertrans.cn/39/3832/383109/383109_8.png

磨坊 发表于 2025-3-23 03:00:33

,Die Verwendung der künstlichen Seide,on band, namely the possibility to define many linearized Molodensky problems, starting from different zero order approximations, in such a way that they all lead to the same final solution, at least within pre-established error bounds. In doing so, a flaw in the classical linearization procedure ha

FLOUR 发表于 2025-3-23 09:06:49

Die Indigosole und ihre Verwendungt the boundary values and the solutions of the Helmert Molodensky (HM) and Helmert Stokes (HS) BVPs, and show their equivalence when they are related to each other by the so-called “analytical (downward) continuation” process in linear approximation.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Geodetic Boundary Value Problem: the Equivalence between Molodensky’s and Helmert’s Solutions; Fernando Sansò,Michael G.‘Sideris Book 2017