人工合成
发表于 2025-3-21 16:43:22
书目名称Generalized Functions and Fourier Analysis影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0382206<br><br> <br><br>书目名称Generalized Functions and Fourier Analysis影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0382206<br><br> <br><br>书目名称Generalized Functions and Fourier Analysis网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0382206<br><br> <br><br>书目名称Generalized Functions and Fourier Analysis网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0382206<br><br> <br><br>书目名称Generalized Functions and Fourier Analysis被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0382206<br><br> <br><br>书目名称Generalized Functions and Fourier Analysis被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0382206<br><br> <br><br>书目名称Generalized Functions and Fourier Analysis年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0382206<br><br> <br><br>书目名称Generalized Functions and Fourier Analysis年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0382206<br><br> <br><br>书目名称Generalized Functions and Fourier Analysis读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0382206<br><br> <br><br>书目名称Generalized Functions and Fourier Analysis读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0382206<br><br> <br><br>
ITCH
发表于 2025-3-21 21:17:14
Generalized Functions and Fourier Analysis978-3-319-51911-1Series ISSN 0255-0156 Series E-ISSN 2296-4878
弯曲道理
发表于 2025-3-22 03:36:16
Jerzy Urbanowicz,Kenneth S. Williamsn terms of the Schwartz’ bounded distributions, and we discuss their characterization in terms of convolution and of decomposition as a finite sum of derivatives of suitable functions. We also prove mapping properties under the action of a class of Fourier integral operators, with inhomogeneous phas
Introduction
发表于 2025-3-22 07:52:53
http://reply.papertrans.cn/39/3823/382206/382206_4.png
抗体
发表于 2025-3-22 11:11:15
Susan M. Sheridan,Thomas R. Kratochwillor the solutions. We first deal with the case . = 2, introducing a recent result about the blow-up phenomena for the solutions. Secondly, we deal with the general .-Laplacian case. In each case, we classify the parameters depending on the equations so that we can see when the solutions blow up or gl
抚慰
发表于 2025-3-22 15:26:48
http://reply.papertrans.cn/39/3823/382206/382206_6.png
抚慰
发表于 2025-3-22 17:34:33
https://doi.org/10.1007/978-3-662-06395-8ounting functions of the generalized integers and primes, respectively. This was already considered by Nyman (Acta Math. 81 (1949), 299–307), but his article on the subject contains some mistakes. We also obtain an average version of this prime number theorem with remainders in the Cesàro sense.
left-ventricle
发表于 2025-3-23 01:17:09
Venkatram Ramaswamy,Steven H. Cohenn, Heaviside, and Dirac to deal with generalized functions. They are set-theoretical functions defined on a natural non-Archimedean ring, and include Colombeau generalized functions (and hence also Schwartz distributions) as a particular case. One of their key property is the closure with respect to
集合
发表于 2025-3-23 01:48:57
David B. Whitlark,Scott M. Smith–Skorokhod type with respect to fractional Brownian motion. The dynamics are driven by strongly continuous semigroups and the cost functional is quadratic. We use the fractional isometry mapping defined between the space of square integrable stochastic processes with respect to fractional Gaussian w
错误
发表于 2025-3-23 08:05:27
http://reply.papertrans.cn/39/3823/382206/382206_10.png