投射技术 发表于 2025-3-21 17:56:23
书目名称Generalized Convexity, Generalized Monotonicity: Recent Results影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0382194<br><br> <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0382194<br><br> <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0382194<br><br> <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0382194<br><br> <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0382194<br><br> <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0382194<br><br> <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0382194<br><br> <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0382194<br><br> <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0382194<br><br> <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0382194<br><br> <br><br>Sarcoma 发表于 2025-3-21 22:44:04
http://reply.papertrans.cn/39/3822/382194/382194_2.pngCLOWN 发表于 2025-3-22 00:34:37
Generalized Convexity, Generalized Monotonicity: Recent ResultsRecent ResultsCAMEO 发表于 2025-3-22 05:38:31
Jean-Pierre Crouzeix,Juan-Enrique Martinez-Legaz,MBOLUS 发表于 2025-3-22 08:55:21
http://reply.papertrans.cn/39/3822/382194/382194_5.pngamplitude 发表于 2025-3-22 16:15:19
Are Generalized Derivatives Sseful for Generalized Convex Functions?f Martínez-Legaz-Sach, Penot-Volle, Thach. We complete this list by some new proposals. We compare these specific subdifferentials to some all-purpose subdifferentials used in nonsmooth analysis. We give some hints about their uses. We also point out links with duality theories.amplitude 发表于 2025-3-22 20:12:37
http://reply.papertrans.cn/39/3822/382194/382194_7.png刺激 发表于 2025-3-22 22:33:06
Simplified Global Optimality Conditions in Generalized Conjugation Theoryons on a metric space. Moreover, by assuming some topological structure on the set ., we obtain the nonemptiness of the subdifferential of any proper l.s.c. function with respect to the family Ф of the continuous ones.ovation 发表于 2025-3-23 04:18:18
http://reply.papertrans.cn/39/3822/382194/382194_9.png著名 发表于 2025-3-23 07:27:09
Combining Theory with Practice,f Martínez-Legaz-Sach, Penot-Volle, Thach. We complete this list by some new proposals. We compare these specific subdifferentials to some all-purpose subdifferentials used in nonsmooth analysis. We give some hints about their uses. We also point out links with duality theories.