投射技术 发表于 2025-3-21 17:56:23

书目名称Generalized Convexity, Generalized Monotonicity: Recent Results影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0382194<br><br>        <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0382194<br><br>        <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0382194<br><br>        <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0382194<br><br>        <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0382194<br><br>        <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0382194<br><br>        <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0382194<br><br>        <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0382194<br><br>        <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0382194<br><br>        <br><br>书目名称Generalized Convexity, Generalized Monotonicity: Recent Results读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0382194<br><br>        <br><br>

Sarcoma 发表于 2025-3-21 22:44:04

http://reply.papertrans.cn/39/3822/382194/382194_2.png

CLOWN 发表于 2025-3-22 00:34:37

Generalized Convexity, Generalized Monotonicity: Recent ResultsRecent Results

CAMEO 发表于 2025-3-22 05:38:31

Jean-Pierre Crouzeix,Juan-Enrique Martinez-Legaz,M

BOLUS 发表于 2025-3-22 08:55:21

http://reply.papertrans.cn/39/3822/382194/382194_5.png

amplitude 发表于 2025-3-22 16:15:19

Are Generalized Derivatives Sseful for Generalized Convex Functions?f Martínez-Legaz-Sach, Penot-Volle, Thach. We complete this list by some new proposals. We compare these specific subdifferentials to some all-purpose subdifferentials used in nonsmooth analysis. We give some hints about their uses. We also point out links with duality theories.

amplitude 发表于 2025-3-22 20:12:37

http://reply.papertrans.cn/39/3822/382194/382194_7.png

刺激 发表于 2025-3-22 22:33:06

Simplified Global Optimality Conditions in Generalized Conjugation Theoryons on a metric space. Moreover, by assuming some topological structure on the set ., we obtain the nonemptiness of the subdifferential of any proper l.s.c. function with respect to the family Ф of the continuous ones.

ovation 发表于 2025-3-23 04:18:18

http://reply.papertrans.cn/39/3822/382194/382194_9.png

著名 发表于 2025-3-23 07:27:09

Combining Theory with Practice,f Martínez-Legaz-Sach, Penot-Volle, Thach. We complete this list by some new proposals. We compare these specific subdifferentials to some all-purpose subdifferentials used in nonsmooth analysis. We give some hints about their uses. We also point out links with duality theories.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Generalized Convexity, Generalized Monotonicity: Recent Results; Recent Results Jean-Pierre Crouzeix,Juan-Enrique Martinez-Legaz,M Book 199