刘兴旺 发表于 2025-3-21 19:26:24

书目名称Generalized Convexity and Vector Optimization影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0382192<br><br>        <br><br>书目名称Generalized Convexity and Vector Optimization影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0382192<br><br>        <br><br>书目名称Generalized Convexity and Vector Optimization网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0382192<br><br>        <br><br>书目名称Generalized Convexity and Vector Optimization网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0382192<br><br>        <br><br>书目名称Generalized Convexity and Vector Optimization被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0382192<br><br>        <br><br>书目名称Generalized Convexity and Vector Optimization被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0382192<br><br>        <br><br>书目名称Generalized Convexity and Vector Optimization年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0382192<br><br>        <br><br>书目名称Generalized Convexity and Vector Optimization年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0382192<br><br>        <br><br>书目名称Generalized Convexity and Vector Optimization读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0382192<br><br>        <br><br>书目名称Generalized Convexity and Vector Optimization读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0382192<br><br>        <br><br>

Delirium 发表于 2025-3-21 23:22:52

http://reply.papertrans.cn/39/3822/382192/382192_2.png

dyspareunia 发表于 2025-3-22 01:09:47

http://reply.papertrans.cn/39/3822/382192/382192_3.png

Incorporate 发表于 2025-3-22 04:57:04

Second and Higher Order Duality,can be developed further in two ways: one is in a more general setting of a modified dual (namely, a second order and a higher order dual), the other is in the generalized convexity. The benefit of doing this not only that results obtained by these kinds of duals under generalized convexity extend s

民间传说 发表于 2025-3-22 09:00:22

Symmetric Duality,nd its dual are symmetric in this sense. However, this is not the case in nonlinear programs in general. Following Dorn (1960) many authors have contributed to symmetric duality, see Dantzig et al. (1965), Bazaraa and Goode (1973), Chandra et al. (1985), Cottle (1963), Hou and Yang (2001), Kim et al

STAT 发表于 2025-3-22 15:28:31

Vector Variational-like Inequality Problems,ons of α— invex functions. We will identify the vector critical points, the weakly efficient solutions and the solutions of the weak vector variational-like inequality problems, under pseudo-α— invexity assumptions. These conditions are more general than those of existing ones in the literature. In

STAT 发表于 2025-3-22 19:32:33

http://reply.papertrans.cn/39/3822/382192/382192_7.png

Emmenagogue 发表于 2025-3-23 00:07:11

VARIATION 3: Portraits, Psychogramme,ome well-known classical results of (first order) duality for convex optimization problems, but also that higher order duality can provide a lower bound to the infimum of a primal optimization problem when it is difficult to find a feasible solution for the first order dual.

Injunction 发表于 2025-3-23 01:30:16

http://reply.papertrans.cn/39/3822/382192/382192_9.png

实施生效 发表于 2025-3-23 07:27:38

http://reply.papertrans.cn/39/3822/382192/382192_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Generalized Convexity and Vector Optimization; Shashi Kant Mishra,Shou-Yang Wang,Kin Keung Lai Book 2009 Springer-Verlag Berlin Heidelberg