MAPLE 发表于 2025-3-25 04:31:46

http://reply.papertrans.cn/39/3822/382182/382182_21.png

ACRID 发表于 2025-3-25 10:05:46

Generalized Connectivity of Graphs978-3-319-33828-6Series ISSN 2191-8198 Series E-ISSN 2191-8201

个阿姨勾引你 发表于 2025-3-25 15:34:42

http://reply.papertrans.cn/39/3822/382182/382182_23.png

有毛就脱毛 发表于 2025-3-25 17:06:10

http://reply.papertrans.cn/39/3822/382182/382182_24.png

Chauvinistic 发表于 2025-3-26 00:04:18

http://reply.papertrans.cn/39/3822/382182/382182_25.png

嘴唇可修剪 发表于 2025-3-26 02:52:50

http://reply.papertrans.cn/39/3822/382182/382182_26.png

champaign 发表于 2025-3-26 07:27:25

http://reply.papertrans.cn/39/3822/382182/382182_27.png

FLOAT 发表于 2025-3-26 08:44:20

http://reply.papertrans.cn/39/3822/382182/382182_28.png

penance 发表于 2025-3-26 14:03:25

Algorithm and Complexity,e have seen in the last chapter, even for some very special graphs, it is very hard to get the exact values of their generalized .-connectivity for general .. A natural question is whether there is a polynomial-time algorithm to get the parameters ..(.) and .. In this chapter, we study the complexit

reperfusion 发表于 2025-3-26 20:28:53

Nordhaus-Gaddum-Type Results, a positive integer ., the . is to determine sharp bounds for (1) . and (2) ., as . ranges over the class ., and characterize the extremal graphs. The Nordhaus-Gaddum-type relations have received wide attention; see a survey paper [.] by Aouchiche and Hansen.
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Generalized Connectivity of Graphs; Xueliang Li,Yaping Mao Book 2016 The Author(s) 2016 Connectivity of Graphs.open problems.conjectures.r