补角 发表于 2025-3-23 10:57:59

http://reply.papertrans.cn/39/3815/381407/381407_11.png

结束 发表于 2025-3-23 17:33:22

http://reply.papertrans.cn/39/3815/381407/381407_12.png

infantile 发表于 2025-3-23 20:37:06

Gelfand Triples and Their Hecke Algebras978-3-030-51607-9Series ISSN 0075-8434 Series E-ISSN 1617-9692

逃避现实 发表于 2025-3-24 01:20:07

DNA, RNA und IHRE Amplifikation,plane (see ). We suppose that . is an odd prime power (cf. Sect. .) and we denote by . (respectively .) the multiplicative characters of . (respectively .).

时代 发表于 2025-3-24 02:42:01

http://reply.papertrans.cn/39/3815/381407/381407_15.png

Lumbar-Spine 发表于 2025-3-24 09:46:42

http://reply.papertrans.cn/39/3815/381407/381407_16.png

千篇一律 发表于 2025-3-24 12:51:45

http://reply.papertrans.cn/39/3815/381407/381407_17.png

Flu表流动 发表于 2025-3-24 15:05:20

https://doi.org/10.1007/978-1-4757-9424-3Let . be a finite group and . ≤ . a subgroup. Recalling the equality between the induced representation . and the permutation representation (., .(.).), (.) yields a ∗-algebra isomorphism between the algebra of bi-.-invariant functions on . and the commutant of the representation obtained by inducing to . the trivial representation of ..

NUDGE 发表于 2025-3-24 22:33:01

https://doi.org/10.1007/978-3-662-61707-6In this section we consider triples of the form (., ., .) in the particular case when the subgroup . ≤ . is normal.

教育学 发表于 2025-3-25 02:16:27

Preliminaries,In this chapter, we fix notation and recall some basic facts on linear algebra and representation theory of finite groups that will be used in the proofs of several results in the sequel.
页: 1 [2] 3 4
查看完整版本: Titlebook: Gelfand Triples and Their Hecke Algebras; Harmonic Analysis fo Tullio Ceccherini-Silberstein,Fabio Scarabotti,Fil Book 2020 Springer Nature