GURU 发表于 2025-3-21 18:19:12
书目名称Galois Theory, Coverings, and Riemann Surfaces影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0380430<br><br> <br><br>书目名称Galois Theory, Coverings, and Riemann Surfaces影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0380430<br><br> <br><br>书目名称Galois Theory, Coverings, and Riemann Surfaces网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0380430<br><br> <br><br>书目名称Galois Theory, Coverings, and Riemann Surfaces网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0380430<br><br> <br><br>书目名称Galois Theory, Coverings, and Riemann Surfaces被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0380430<br><br> <br><br>书目名称Galois Theory, Coverings, and Riemann Surfaces被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0380430<br><br> <br><br>书目名称Galois Theory, Coverings, and Riemann Surfaces年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0380430<br><br> <br><br>书目名称Galois Theory, Coverings, and Riemann Surfaces年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0380430<br><br> <br><br>书目名称Galois Theory, Coverings, and Riemann Surfaces读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0380430<br><br> <br><br>书目名称Galois Theory, Coverings, and Riemann Surfaces读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0380430<br><br> <br><br>conjunctiva 发表于 2025-3-21 21:39:52
http://reply.papertrans.cn/39/3805/380430/380430_2.pngJocose 发表于 2025-3-22 01:14:04
en by one of the founders of topological Galois theory.Inclu.The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising an包庇 发表于 2025-3-22 07:13:32
http://reply.papertrans.cn/39/3805/380430/380430_4.pngLacerate 发表于 2025-3-22 09:54:06
http://reply.papertrans.cn/39/3805/380430/380430_5.png新娘 发表于 2025-3-22 16:33:20
http://reply.papertrans.cn/39/3805/380430/380430_6.png新娘 发表于 2025-3-22 18:40:48
Coverings,he second chapter. We consider several classifications of coverings closely related to each other. At the same time, we stress a formal analogy between the results thus obtained and the fundamental theorem of Galois theory.ethereal 发表于 2025-3-22 22:39:07
http://reply.papertrans.cn/39/3805/380430/380430_8.png持久 发表于 2025-3-23 04:50:49
https://doi.org/10.1007/978-3-642-57544-0the geometry of ramified coverings together with Riemann’s existence theorem allows one to give a transparent description of algebraic extensions of the field of meromorphic functions over a Riemann surface.glacial 发表于 2025-3-23 09:03:13
Ramified Coverings and Galois Theory,the geometry of ramified coverings together with Riemann’s existence theorem allows one to give a transparent description of algebraic extensions of the field of meromorphic functions over a Riemann surface.