游牧 发表于 2025-3-21 20:05:17
书目名称Galois Theory of Linear Differential Equations影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0380428<br><br> <br><br>书目名称Galois Theory of Linear Differential Equations影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0380428<br><br> <br><br>书目名称Galois Theory of Linear Differential Equations网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0380428<br><br> <br><br>书目名称Galois Theory of Linear Differential Equations网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0380428<br><br> <br><br>书目名称Galois Theory of Linear Differential Equations被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0380428<br><br> <br><br>书目名称Galois Theory of Linear Differential Equations被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0380428<br><br> <br><br>书目名称Galois Theory of Linear Differential Equations年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0380428<br><br> <br><br>书目名称Galois Theory of Linear Differential Equations年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0380428<br><br> <br><br>书目名称Galois Theory of Linear Differential Equations读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0380428<br><br> <br><br>书目名称Galois Theory of Linear Differential Equations读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0380428<br><br> <br><br>GNAT 发表于 2025-3-21 23:07:28
http://reply.papertrans.cn/39/3805/380428/380428_2.pngBiofeedback 发表于 2025-3-22 02:24:45
http://reply.papertrans.cn/39/3805/380428/380428_3.pngSOW 发表于 2025-3-22 08:12:50
Darstellung: Gewinn- & Verlust-Profile,ver .({.})) quasi-split equation δ−. that is isomorphic, over .((.)), to δ−. (cf. Proposition 3.41). This means that there is a . such that .. In the following, δ−., δ−., and . are fixed and the eigenvalues of δ−., δ−. are denoted by .,…, ..minion 发表于 2025-3-22 08:48:18
http://reply.papertrans.cn/39/3805/380428/380428_5.pngReclaim 发表于 2025-3-22 15:55:11
http://reply.papertrans.cn/39/3805/380428/380428_6.pngReclaim 发表于 2025-3-22 19:10:56
Picard-Vessiot Theoryor all of this material can be found in the classics of Kaplansky and Kolchin (and Kolchin’s original papers that have been collected in ) as well as the recent book of Magid and the papers and .束缚 发表于 2025-3-23 00:13:06
Stokes Phenomenon and Differential Galois Groupsver .({.})) quasi-split equation δ−. that is isomorphic, over .((.)), to δ−. (cf. Proposition 3.41). This means that there is a . such that .. In the following, δ−., δ−., and . are fixed and the eigenvalues of δ−., δ−. are denoted by .,…, ..使混合 发表于 2025-3-23 02:15:57
Stokes Matrices and Meromorphic Classification with a differential module . a triple Trip(.)=(., {.}, γ). More precisely, a tannakian category Gr. was defined, which has as objects the above triples. The functor Trip: . from the category of the differential modules over . to the category of triples was shown to be an equivalence of tannakian categories.Malaise 发表于 2025-3-23 09:11:55
Positive Characteristics conjecture on .-curvatures is one of the motivations for this. Another motivation is the observation that for the factorization of differential operators over, say, the differential field Q(.) the reductions modulo prime numbers yield useful information.