Anticoagulants 发表于 2025-3-25 05:02:41

http://reply.papertrans.cn/39/3805/380426/380426_21.png

散开 发表于 2025-3-25 10:44:51

On the Essential Dimension of ,-GroupsWe improve the known bounds on the essential dimension of .-groups over (large) fields of characteristic ..

EVEN 发表于 2025-3-25 15:16:54

On the Non-Existence of Certain Galois ExtensionsIn this article, we give a survey of my results on the non-existence and finiteness of certain Galois extensions of the rational number field ℚ with prescribed ramification. The detail has been (will be) published in , , , , .

intention 发表于 2025-3-25 18:32:44

Frobenius Modules and Galois GroupsIn these notes some basic facts on Frobenius modules are collected. Frobenius modules are finite-dimensional vector spaces over fields with a Frobenius endomorphism Ø, provided with an injective Ø-semilinear Frobenius operator Ф.

BADGE 发表于 2025-3-25 23:31:55

http://reply.papertrans.cn/39/3805/380426/380426_25.png

中古 发表于 2025-3-26 02:48:00

http://reply.papertrans.cn/39/3805/380426/380426_26.png

知识 发表于 2025-3-26 07:24:33

Projektauftrag und Projektabwicklung, inverse Galois problem. Especially the case when . = . the rational number field, plays an important role in the study of the absolute Galois Group of .. By many mathematicians, the existence of ./.-extensions has been shown for a lot of finite groups . by now (cf. Malle-Matzat , Serre , etc.)

政府 发表于 2025-3-26 10:19:09

http://reply.papertrans.cn/39/3805/380426/380426_28.png

Pepsin 发表于 2025-3-26 15:47:57

E. Blanck,H. Niklas,Br. Tacke,F. Gieseckeelds of their genus fields. More precisely, under GRH, among the 305 imaginary quadratic number fields with discriminants larger than —1000, at most 16 fields are exceptional , , and among the 1690 real quadratic number fields with discriminants less than or equal to 5565, only 4 fields are exceptional .

灌输 发表于 2025-3-26 20:11:46

http://reply.papertrans.cn/39/3805/380426/380426_30.png
页: 1 2 [3] 4 5 6
查看完整版本: Titlebook: Galois Theory and Modular Forms; Ki-ichiro Hashimoto,Katsuya Miyake,Hiroaki Nakamur Book 2004 Kluwer Academic Publishers 2004 Abelian vari