恳求 发表于 2025-3-21 16:14:41
书目名称Galloping Instability to Chaos of Cables影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0380410<br><br> <br><br>书目名称Galloping Instability to Chaos of Cables影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0380410<br><br> <br><br>书目名称Galloping Instability to Chaos of Cables网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0380410<br><br> <br><br>书目名称Galloping Instability to Chaos of Cables网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0380410<br><br> <br><br>书目名称Galloping Instability to Chaos of Cables被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0380410<br><br> <br><br>书目名称Galloping Instability to Chaos of Cables被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0380410<br><br> <br><br>书目名称Galloping Instability to Chaos of Cables年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0380410<br><br> <br><br>书目名称Galloping Instability to Chaos of Cables年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0380410<br><br> <br><br>书目名称Galloping Instability to Chaos of Cables读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0380410<br><br> <br><br>书目名称Galloping Instability to Chaos of Cables读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0380410<br><br> <br><br>Anticonvulsants 发表于 2025-3-21 20:42:22
Galloping Instability to Chaos of Cables978-981-10-5242-2Series ISSN 1867-8440 Series E-ISSN 1867-8459Cosmopolitan 发表于 2025-3-22 04:10:53
http://reply.papertrans.cn/39/3805/380410/380410_3.pngprojectile 发表于 2025-3-22 07:38:39
http://reply.papertrans.cn/39/3805/380410/380410_4.pngComprise 发表于 2025-3-22 11:00:28
https://doi.org/10.1007/978-3-322-91410-1esented. This method is the generalized harmonic balance method. This method is first to determine a basis of trigonometric functions, and then to use the finite Fourier series for expression of periodic solutions in nonlinear dynamical systems. Further, using Functional analysis, the coefficients o让你明白 发表于 2025-3-22 15:37:40
Nothingness and the Return of Metaphysics,ed, and quadratic nonlinear oscillator are presented first through the Fourier series solutions with finite harmonic terms, and the stability and bifurcation analyses of the corresponding period-. motions are carried out. The bifurcation trees of period-1 motions to chaos are presented for a better让你明白 发表于 2025-3-22 19:32:34
http://reply.papertrans.cn/39/3805/380410/380410_7.png青少年 发表于 2025-3-22 23:48:48
https://doi.org/10.1007/978-3-031-05999-5 the two degree-of-freedom oscillator is only from aero-dynamical forces caused by the uniform airflow. The analytical solutions of periodic motions for linear cable galloping are discussed from the analytical solutions with the finite Fourier series. The corresponding stability and bifurcation analDEBT 发表于 2025-3-23 04:44:07
http://reply.papertrans.cn/39/3805/380410/380410_9.png讽刺滑稽戏剧 发表于 2025-3-23 06:02:21
http://reply.papertrans.cn/39/3805/380410/380410_10.png