Corroborate 发表于 2025-3-28 18:14:47

http://reply.papertrans.cn/39/3804/380375/380375_41.png

排斥 发表于 2025-3-28 21:59:30

The , and , Methods,ulate the discrete problem. For simplicity we shall content ourselves with describing the situation in the case of a simple selfadjoint parabolic equation in one space dimension, and only study spatially semidiscrete methods.

bromide 发表于 2025-3-29 02:22:19

A Mixed Method,is formulation the gradient of the solution is introduced as a separate dependent variable, the approximation of which is sought in a different finite element space than the solution itself. One advantage of this procedure is that the gradient of the solution may be approximated to the same order of

邪恶的你 发表于 2025-3-29 04:15:00

http://reply.papertrans.cn/39/3804/380375/380375_44.png

Malcontent 发表于 2025-3-29 08:24:22

https://doi.org/10.1007/3-540-33122-0Approximation; Galerkin methods; differential equations; finite element method; finite element theory; ma

BLOT 发表于 2025-3-29 11:42:46

978-3-642-06967-3Springer-Verlag GmbH Germany 2006

Thyroiditis 发表于 2025-3-29 15:33:14

http://reply.papertrans.cn/39/3804/380375/380375_47.png

MIR 发表于 2025-3-29 20:11:05

https://doi.org/10.1007/978-3-319-58969-5In this introductory chapter we shall study the standard Galerkin finite element method for the approximate solution of the model initial-boundary value problem for the heat equation

EPT 发表于 2025-3-30 02:07:24

Theatre at the End of the WorldIn this chapter we shall study the numerical solution of a singular parabolic equation in one space dimension which arises after reduction by polar coordinates of a radially symmetric parabolic equation in three space dimensions. We shall analyze and compare finite element discretizations based on two different variational formulations.

被诅咒的人 发表于 2025-3-30 07:49:47

http://reply.papertrans.cn/39/3804/380375/380375_50.png
页: 1 2 3 4 [5] 6 7
查看完整版本: Titlebook: Galerkin Finite Element Methods for Parabolic Problems; Vidar Thomée Book 2006Latest edition Springer-Verlag GmbH Germany 2006 Approximati