Exaltation 发表于 2025-3-21 17:55:08

书目名称Elementary Galois Theory影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0320537<br><br>        <br><br>书目名称Elementary Galois Theory影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0320537<br><br>        <br><br>书目名称Elementary Galois Theory网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0320537<br><br>        <br><br>书目名称Elementary Galois Theory网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0320537<br><br>        <br><br>书目名称Elementary Galois Theory被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0320537<br><br>        <br><br>书目名称Elementary Galois Theory被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0320537<br><br>        <br><br>书目名称Elementary Galois Theory年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0320537<br><br>        <br><br>书目名称Elementary Galois Theory年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0320537<br><br>        <br><br>书目名称Elementary Galois Theory读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0320537<br><br>        <br><br>书目名称Elementary Galois Theory读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0320537<br><br>        <br><br>

怎样才咆哮 发表于 2025-3-21 21:09:43

http://reply.papertrans.cn/33/3206/320537/320537_2.png

llibretto 发表于 2025-3-22 03:26:52

http://reply.papertrans.cn/33/3206/320537/320537_3.png

推延 发表于 2025-3-22 07:32:10

http://reply.papertrans.cn/33/3206/320537/320537_4.png

Countermand 发表于 2025-3-22 09:14:51

http://reply.papertrans.cn/33/3206/320537/320537_5.png

Ornament 发表于 2025-3-22 15:40:58

2731-3824 Core statements and essential arguments are summarised.Why is the squaring of the circle, why is the division of angles with compass and ruler impossible? Why are there general solution formulas for polynomial equations of degree 2, 3 and 4, but not for degree 5 or higher?..This textbook deals with

Ornament 发表于 2025-3-22 17:41:39

Textbook 2024omial equations of degree 2, 3 and 4, but not for degree 5 or higher?..This textbook deals with such classical questions in an elementary way in the context of Galois theory. It thus provides a classical introduction and at the same time deals with applications. The point of view of a constructive m

一大块 发表于 2025-3-23 00:41:45

http://reply.papertrans.cn/33/3206/320537/320537_8.png

engagement 发表于 2025-3-23 04:43:46

http://reply.papertrans.cn/33/3206/320537/320537_9.png

贪婪的人 发表于 2025-3-23 06:47:11

Methoden der Journalismusforschungn is how to determine whether a polynomial, say over the rational numbers, is irreducible. To this end, we provide a numerical method by which we can definitely determine whether such a polynomial is irreducible or not. This implies that every polynomial has an essentially unique decomposition into
页: [1] 2 3 4
查看完整版本: Titlebook: Elementary Galois Theory; A Constructive Appro Marc Nieper-Wißkirchen Textbook 2024 The Editor(s) (if applicable) and The Author(s), under