分期 发表于 2025-3-21 16:43:30

书目名称Exploring Curvature影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0320272<br><br>        <br><br>书目名称Exploring Curvature影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0320272<br><br>        <br><br>书目名称Exploring Curvature网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0320272<br><br>        <br><br>书目名称Exploring Curvature网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0320272<br><br>        <br><br>书目名称Exploring Curvature被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0320272<br><br>        <br><br>书目名称Exploring Curvature被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0320272<br><br>        <br><br>书目名称Exploring Curvature年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0320272<br><br>        <br><br>书目名称Exploring Curvature年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0320272<br><br>        <br><br>书目名称Exploring Curvature读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0320272<br><br>        <br><br>书目名称Exploring Curvature读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0320272<br><br>        <br><br>

START 发表于 2025-3-21 21:53:06

http://reply.papertrans.cn/33/3203/320272/320272_2.png

有其法作用 发表于 2025-3-22 03:36:04

http://reply.papertrans.cn/33/3203/320272/320272_3.png

幸福愉悦感 发表于 2025-3-22 07:15:35

Nicole Burzan,Ronald Hitzler,Heiko Kirschneres can be expressed in terms of certain fundamental quantities called the metric coefficients. The theory discussed here and in Chapter 13 was invented single-handedly in the early part of the 19th century by the great mathematician Gauss (whose biography is sketched in Chapter 14). It was a major turning point in the history of geometry.

Ondines-curse 发表于 2025-3-22 10:20:51

http://reply.papertrans.cn/33/3203/320272/320272_5.png

带来 发表于 2025-3-22 16:08:03

http://reply.papertrans.cn/33/3203/320272/320272_6.png

带来 发表于 2025-3-22 19:48:19

http://reply.papertrans.cn/33/3203/320272/320272_7.png

使习惯于 发表于 2025-3-23 00:14:20

Curves,duced in earlier chapters. Our aim is to proceed from intuitive notions about curves to a clear, abstract definition. This process - the clarification of ideas - is really one of the most important activities of the mathematician.

Rodent 发表于 2025-3-23 03:40:47

Tangent,rough .. The fact that Euclid felt compelled to . this result, which most of us would regard as “obvious”, attests to the high level of rigor that permeated Greek mathematics in the days of Plato’s Academy.

取消 发表于 2025-3-23 06:00:00

http://reply.papertrans.cn/33/3203/320272/320272_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Exploring Curvature; James Casey Textbook 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996 Gaussian curvatu