手镯 发表于 2025-3-21 16:23:28
书目名称Extrema of Smooth Functions影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0320007<br><br> <br><br>书目名称Extrema of Smooth Functions影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0320007<br><br> <br><br>书目名称Extrema of Smooth Functions网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0320007<br><br> <br><br>书目名称Extrema of Smooth Functions网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0320007<br><br> <br><br>书目名称Extrema of Smooth Functions被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0320007<br><br> <br><br>书目名称Extrema of Smooth Functions被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0320007<br><br> <br><br>书目名称Extrema of Smooth Functions年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0320007<br><br> <br><br>书目名称Extrema of Smooth Functions年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0320007<br><br> <br><br>书目名称Extrema of Smooth Functions读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0320007<br><br> <br><br>书目名称Extrema of Smooth Functions读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0320007<br><br> <br><br>五行打油诗 发表于 2025-3-21 22:14:03
http://reply.papertrans.cn/33/3201/320007/320007_2.pngAORTA 发表于 2025-3-22 00:58:03
http://reply.papertrans.cn/33/3201/320007/320007_3.png反对 发表于 2025-3-22 05:58:59
http://reply.papertrans.cn/33/3201/320007/320007_4.pngdragon 发表于 2025-3-22 09:40:55
Extensions and Applicationsze its solutions as applications of chapter 6. The optimal control problem with scalar criterion is presented in section 1. In section 2 we present extensions of the control problem to: a) problems with time lags, b) problems with bounded state variables and, c) problems with finite vector criteria.Detonate 发表于 2025-3-22 16:06:41
https://doi.org/10.1007/978-3-319-00095-4cise presently. By the 1st order necessary condition of Chapter 1 we have: f̂. + f̂.ξ̂′ = 0. But g(x1, ξ(x.)) is a constant function around x̂.. Thus ĝ. + ĝ.ξ̂′ = 0. Solving for ξ̂′ we get: ξ̂′ = -ĝ./ĝ..Detonate 发表于 2025-3-22 20:10:08
Equality Constraintscise presently. By the 1st order necessary condition of Chapter 1 we have: f̂. + f̂.ξ̂′ = 0. But g(x1, ξ(x.)) is a constant function around x̂.. Thus ĝ. + ĝ.ξ̂′ = 0. Solving for ξ̂′ we get: ξ̂′ = -ĝ./ĝ..Texture 发表于 2025-3-22 22:59:43
http://reply.papertrans.cn/33/3201/320007/320007_8.pngLacerate 发表于 2025-3-23 01:54:17
http://reply.papertrans.cn/33/3201/320007/320007_9.png万神殿 发表于 2025-3-23 08:42:42
http://reply.papertrans.cn/33/3201/320007/320007_10.png