债务人 发表于 2025-3-21 18:14:12

书目名称Exploring the Riemann Zeta Function影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0319661<br><br>        <br><br>书目名称Exploring the Riemann Zeta Function影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0319661<br><br>        <br><br>书目名称Exploring the Riemann Zeta Function网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0319661<br><br>        <br><br>书目名称Exploring the Riemann Zeta Function网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0319661<br><br>        <br><br>书目名称Exploring the Riemann Zeta Function被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0319661<br><br>        <br><br>书目名称Exploring the Riemann Zeta Function被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0319661<br><br>        <br><br>书目名称Exploring the Riemann Zeta Function年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0319661<br><br>        <br><br>书目名称Exploring the Riemann Zeta Function年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0319661<br><br>        <br><br>书目名称Exploring the Riemann Zeta Function读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0319661<br><br>        <br><br>书目名称Exploring the Riemann Zeta Function读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0319661<br><br>        <br><br>

Champion 发表于 2025-3-21 23:15:03

http://reply.papertrans.cn/32/3197/319661/319661_2.png

PIZZA 发表于 2025-3-22 02:27:55

http://reply.papertrans.cn/32/3197/319661/319661_3.png

Callus 发表于 2025-3-22 05:00:31

http://reply.papertrans.cn/32/3197/319661/319661_4.png

不能平静 发表于 2025-3-22 12:07:25

http://reply.papertrans.cn/32/3197/319661/319661_5.png

腐烂 发表于 2025-3-22 13:52:08

http://reply.papertrans.cn/32/3197/319661/319661_6.png

腐烂 发表于 2025-3-22 20:03:38

Explorations in the Theory of Partition Zeta Functions,case of the multiplicative theory, we provide specialization formulas and results on the analytic continuations of these “partition zeta functions,” find unusual formulas for the Riemann zeta function, prove identities for multiple zeta values, and see that some of the formulas allow for .-adic inte

rectocele 发表于 2025-3-22 22:57:44

Reading Riemann,wareness of the developments in mathematics, and, in particular, in mathematical physics at that time shows that Riemann was working in a very specific environment and that his thinking reflects this environment. It is therefore helpful to know something of this background. Riemann’s short paper on

讨好女人 发表于 2025-3-23 03:51:35

,Arthur’s Truncated Eisenstein Series for ,(2, ,) and the Riemann Zeta Function: A Survey,nglands and Arthur. In this survey we focus on the deep connections between Eisenstein series for .(2, .), truncation, and the Riemann zeta function. Applications to zero free regions for the Riemann zeta function and automorphic L-functions are elucidated.

一大群 发表于 2025-3-23 08:19:00

Some Analogues of Pair Correlation of Zeta Zeros, two Dirichlet .-functions. In each case the relevant Riemann Hypothesis is assumed for obtaining the results. Several auxiliary results necessary for the calculations may be useful in problems about the zeta-function.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Exploring the Riemann Zeta Function; 190 years from Riema Hugh Montgomery,Ashkan Nikeghbali,Michael Th. Rass Book 2017 Springer Internation