半身雕像 发表于 2025-3-23 11:46:12

http://reply.papertrans.cn/32/3194/319373/319373_11.png

AVERT 发表于 2025-3-23 17:44:59

http://reply.papertrans.cn/32/3194/319373/319373_12.png

剥皮 发表于 2025-3-23 18:57:31

http://reply.papertrans.cn/32/3194/319373/319373_13.png

Cloudburst 发表于 2025-3-23 23:09:37

Estimating Optimal Stopping Rules in the Multiple Best Choice Problem with Minimal Summarized Rank vg the multiple best choice problem with the minimal expected ranks of selected objects. We also compare computation results by Cross-Entropy method with results by the genetic algorithm. Computational results showed that the Cross-Entropy method is producing high-quality solution.

搏斗 发表于 2025-3-24 04:57:48

978-3-642-26327-9Springer-Verlag Berlin Heidelberg 2010

Dna262 发表于 2025-3-24 07:53:00

Exploitation of Linkage Learning in Evolutionary Algorithms978-3-642-12834-9Series ISSN 1867-4534 Series E-ISSN 1867-4542

CANON 发表于 2025-3-24 11:31:47

http://reply.papertrans.cn/32/3194/319373/319373_17.png

勉励 发表于 2025-3-24 17:09:06

http://reply.papertrans.cn/32/3194/319373/319373_18.png

贿赂 发表于 2025-3-24 19:04:16

Exploitation of Linkage Learning in Evolutionary Algorithms

CREST 发表于 2025-3-24 23:15:06

Linkage Structure and Genetic Evolutionary Algorithmsetworks is not only influenced by evolution and therefore exhibit non-random properties, but also influences its own evolution in the sense that certain structures are easier for evolutionary forces to adapt for survival. However, this necessarily implies the difficulty of certain other structures.
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Exploitation of Linkage Learning in Evolutionary Algorithms; Ying-ping Chen Book 2010 Springer-Verlag Berlin Heidelberg 2010 Bayesian netw