OBESE 发表于 2025-3-21 16:26:06
书目名称Explanation-Based Neural Network Learning影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0319352<br><br> <br><br>书目名称Explanation-Based Neural Network Learning影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0319352<br><br> <br><br>书目名称Explanation-Based Neural Network Learning网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0319352<br><br> <br><br>书目名称Explanation-Based Neural Network Learning网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0319352<br><br> <br><br>书目名称Explanation-Based Neural Network Learning被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0319352<br><br> <br><br>书目名称Explanation-Based Neural Network Learning被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0319352<br><br> <br><br>书目名称Explanation-Based Neural Network Learning年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0319352<br><br> <br><br>书目名称Explanation-Based Neural Network Learning年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0319352<br><br> <br><br>书目名称Explanation-Based Neural Network Learning读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0319352<br><br> <br><br>书目名称Explanation-Based Neural Network Learning读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0319352<br><br> <br><br>forthy 发表于 2025-3-21 22:54:13
http://reply.papertrans.cn/32/3194/319352/319352_2.png同时发生 发表于 2025-3-22 01:41:27
http://reply.papertrans.cn/32/3194/319352/319352_3.png骗子 发表于 2025-3-22 07:59:52
Empirical Results,Armed with an algorithm for learning from delayed reward, we are now ready to apply EBNN in the context of lifelong control learning. This chapter deals with the application of .-Learning and EBNN in the context of robot control and chess. The key questions underlying this research are:esculent 发表于 2025-3-22 11:01:29
978-1-4612-8597-7Kluwer Academic Publishers 1996禁止,切断 发表于 2025-3-22 16:10:12
http://reply.papertrans.cn/32/3194/319352/319352_6.png禁止,切断 发表于 2025-3-22 17:34:25
http://reply.papertrans.cn/32/3194/319352/319352_7.png现任者 发表于 2025-3-22 23:52:58
Zur Geschichte der Sozialhygiene,ng to learn, humans often learn and generalize successfully from a remarkably small number of training examples. Sometimes a single learning example suffices to generalize reliably in other, similar situations. For example, a single view of a person often suffices to recognize this person reliably eexostosis 发表于 2025-3-23 02:54:37
Berufsmorbidität und -mortalitäthes the meta-level learning problem by learning a .. This domain theory is domain-specific. It characterizes, for example, the relevance of individual features, their cross-dependencies, or certain invariant properties of the domain that apply to all learning tasks within the domain. Obviously, whenConcerto 发表于 2025-3-23 08:58:03
A. Gottstein,A. Schlossmann,R. Volkcontext: the learner is assumed to face supervised learning problems of the same type and, moreover, these learning problems must be related by some domain-specific properties (casted as invariances) that are unknown in the beginning of lifelong learning but can be learned. Central to the learning a