过多
发表于 2025-3-23 10:29:14
http://reply.papertrans.cn/32/3193/319283/319283_11.png
北极人
发表于 2025-3-23 15:50:31
http://reply.papertrans.cn/32/3193/319283/319283_12.png
Myocarditis
发表于 2025-3-23 21:56:12
Model-Agnostic Methods for XAI,In this chapter, we start our journey through XAI model-agnostic methods that are, as we said, potent techniques to produce explanations without relying on ML model internals that are “opaque.”
zonules
发表于 2025-3-24 00:25:42
http://reply.papertrans.cn/32/3193/319283/319283_14.png
Transfusion
发表于 2025-3-24 03:13:47
http://reply.papertrans.cn/32/3193/319283/319283_15.png
统治人类
发表于 2025-3-24 07:38:23
https://doi.org/10.1007/978-3-030-68640-6XAI; Artificial Intelligence; Machine Learning; intrinsic interpretable models; Shapley Values; Deep Tayl
拔出
发表于 2025-3-24 11:32:21
http://reply.papertrans.cn/32/3193/319283/319283_17.png
Saline
发表于 2025-3-24 18:10:23
http://reply.papertrans.cn/32/3193/319283/319283_18.png
HARP
发表于 2025-3-24 21:37:41
http://image.papertrans.cn/e/image/319283.jpg
Bernstein-test
发表于 2025-3-25 01:18:45
Adversarial Machine Learning and Explainability,d by the same NN as a gibbon with 99.3% confidence. What is happening here? The first thoughts are about some mistakes in designing or training the NN, but the point that will emerge from this chapter is that this mistake in classification is due to an adversarial attack