过多 发表于 2025-3-23 10:29:14
http://reply.papertrans.cn/32/3193/319283/319283_11.png北极人 发表于 2025-3-23 15:50:31
http://reply.papertrans.cn/32/3193/319283/319283_12.pngMyocarditis 发表于 2025-3-23 21:56:12
Model-Agnostic Methods for XAI,In this chapter, we start our journey through XAI model-agnostic methods that are, as we said, potent techniques to produce explanations without relying on ML model internals that are “opaque.”zonules 发表于 2025-3-24 00:25:42
http://reply.papertrans.cn/32/3193/319283/319283_14.pngTransfusion 发表于 2025-3-24 03:13:47
http://reply.papertrans.cn/32/3193/319283/319283_15.png统治人类 发表于 2025-3-24 07:38:23
https://doi.org/10.1007/978-3-030-68640-6XAI; Artificial Intelligence; Machine Learning; intrinsic interpretable models; Shapley Values; Deep Tayl拔出 发表于 2025-3-24 11:32:21
http://reply.papertrans.cn/32/3193/319283/319283_17.pngSaline 发表于 2025-3-24 18:10:23
http://reply.papertrans.cn/32/3193/319283/319283_18.pngHARP 发表于 2025-3-24 21:37:41
http://image.papertrans.cn/e/image/319283.jpgBernstein-test 发表于 2025-3-25 01:18:45
Adversarial Machine Learning and Explainability,d by the same NN as a gibbon with 99.3% confidence. What is happening here? The first thoughts are about some mistakes in designing or training the NN, but the point that will emerge from this chapter is that this mistake in classification is due to an adversarial attack